Advertisement

General Relativity and Gravitation

, Volume 43, Issue 1, pp 41–50 | Cite as

Geometry of the thermodynamics of the black holes in Hořava-Lifshitz gravity

  • Ritabrata Biswas
  • Subenoy Chakraborty
Research Article

Abstract

Recently, a non-relativistic renormalizable theory of gravity has been proposed by Hořava. This theory is essentially a field theoretic model for a UV complete theory of gravity and it reduces to Einstein’s general relativity at large distances. Subsequently, Cai and his collaborators have obtained black hole solution in this gravity theory and studied the thermodynamic properties of the black hole solutions. In present work, we investigate the geometric thermodynamics of the above black hole solutions and examine the possibilities of any phase transition.

Keywords

Thermodynamics Black hole Phase transition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hořava P.: Phys. Rev. D 79, 084008 (2009)CrossRefMathSciNetADSGoogle Scholar
  2. 2.
    Arnowitt, R.L., Deser, S., Misner, C.W.: The dynamics of general relativity, gravitation : an introduction to current research, Witten, L., (ed.), Chap. 7, pp. 227–265. Wiley, London (1962), arXiv: gr-qc/0405109Google Scholar
  3. 3.
    Lu H., Mei J., Pope C.N.: Phys. Rev. Lett. 103, 091301 (2009)CrossRefMathSciNetADSGoogle Scholar
  4. 4.
    Nastase, H.: arXiv: 0904.3604[hep-th]Google Scholar
  5. 5.
    Ghodasi, A.: arXiv: 0905.0836[hep-th]Google Scholar
  6. 6.
    Charmousis C., Niz G., Padilla A., Saffin P.M.: JHEP 0908, 070 (2009)CrossRefMathSciNetADSGoogle Scholar
  7. 7.
    Wei, S., Liu, Y., Wang, Y., Guo, H.: arXiv: 1002.1550[hep-th]Google Scholar
  8. 8.
    Mukohyama, S.: arXiv: 0906.5069Google Scholar
  9. 9.
    Calcagni G.: Phys. Rev. D 81, 044006 (2010)CrossRefADSGoogle Scholar
  10. 10.
    Cai R.G., Liu Y., Sun Y.W.: JHEP 0906, 010 (2009)CrossRefMathSciNetADSGoogle Scholar
  11. 11.
    Colgain E.O., Yavartanoo H.: JHEP 0908, 021 (2009)CrossRefADSGoogle Scholar
  12. 12.
    Kehagias, A., Sfetsos: Phys. Lett. B 678 (2009)Google Scholar
  13. 13.
    Park M.I.: JHEP 0909, 123 (2009)CrossRefADSGoogle Scholar
  14. 14.
    Ghodsi A., Hatefi E.: Phys. Rev. D 81, 044016 (2010)CrossRefMathSciNetADSGoogle Scholar
  15. 15.
    Lee, H.W., Kim, Y.W., Myung, Y.S.: arXiv: 0907.3568[hep-th]Google Scholar
  16. 16.
    Tang, J.Z., Chen, B.: arXiv: 0909.4127[hep-th]Google Scholar
  17. 17.
    Setare, M.R., Momeni, D.: arXiv: 0911.1877[hep-th]Google Scholar
  18. 18.
    Kiritsis, E.: arXiv: 0911.3164[hep-th]Google Scholar
  19. 19.
    Tang, J.Z., Chen, B.: 0911.3849[hep-th]Google Scholar
  20. 20.
    Ayon-Beato, E., Garbarz, A., Girirbet, G., Hasaine, M.: arXiv: 1001.2361[hep-th]Google Scholar
  21. 21.
    Capasso, D., Polychronakos, A.P.: arXiv:0911.1535[hep-th]Google Scholar
  22. 22.
    Calcagni, G.: arXiv: 0904.0829[hep-th]Google Scholar
  23. 23.
    Kiritsis, E., Kofinas, G.: arXiv: 0904.1334[hep-th]Google Scholar
  24. 24.
    Hořava P.: JHEP 0903, 020 (2009)ADSGoogle Scholar
  25. 25.
    Hořava, P.: Phys. Rev. Lett. 102, 161301Google Scholar
  26. 26.
    Takahasi, T., Soda, J.: arXiv: 0904.0554[hep-th]Google Scholar
  27. 27.
    Kluson, J.: arXiv: 0904.1343[hep-th]Google Scholar
  28. 28.
    Charmousis C., Niz G., Padilla A., Saffin P.M.: JHEP 0908, 070 (2009)CrossRefMathSciNetADSGoogle Scholar
  29. 29.
    Blas D., Pujolas O., Sibiryakov S.: JHEP 0910, 029 (2009)CrossRefMathSciNetADSGoogle Scholar
  30. 30.
    Cai R.G., Cao L.M., Ohta N.: Phys. Rev. D 80, 024003 (2009)CrossRefMathSciNetADSGoogle Scholar
  31. 31.
    Cai R.G., Cao L.M., Ohta N.: Phys. Lett. B 679, 504509 (2009)MathSciNetGoogle Scholar
  32. 32.
    Banados M., Teitelboim C., Zanelli J.: Phys. Rev. D 49, 975 (1994)CrossRefMathSciNetADSGoogle Scholar
  33. 33.
    Cai R.G., Soh K.S.: Phys. Rev. D 59, 044013 (1999)CrossRefMathSciNetADSGoogle Scholar
  34. 34.
    Regge T., Teitelboim C.: Ann. Phys. 88, 286 (1974)MATHCrossRefMathSciNetADSGoogle Scholar
  35. 35.
    Martincz C., Trocoso R., Zanelli J.: Phys. Rev. D 70, 084035 (2004)CrossRefMathSciNetADSGoogle Scholar
  36. 36.
    Myung, Y.S.: arXiv: 0905.0957[hep-th]Google Scholar
  37. 37.
    Ruppeiner G.: Rev. Mod. Phys. 67, 605 (1995)CrossRefMathSciNetADSGoogle Scholar
  38. 38.
    Aman J.E., Pidokrajt N.: Phys. Rev. D 73, 024017 (2006)CrossRefMathSciNetADSGoogle Scholar
  39. 39.
    Aman J.E., Bengtsson I., Pidokrajt N.: Gen. Relativ. Gravit. 35, 1733 (2003)MATHCrossRefMathSciNetADSGoogle Scholar
  40. 40.
    Janke, W., Johnston, D.A., Kenna, R.: arXiv: 1005.3392[hep-th]Google Scholar
  41. 41.
    Weinhold F.: J. Chem. Phys. 63, 2479 (1975)CrossRefMathSciNetADSGoogle Scholar
  42. 42.
    Hawking S.W.: Phys. Rev. Lett. 26, 1344 (1971)CrossRefADSGoogle Scholar
  43. 43.
    Chakraborty S., Bandyopadhyay T.: Class. Quantum Gravity 25, 245015 (2008)CrossRefMathSciNetADSGoogle Scholar
  44. 44.
    Biswas R., Chakraborty S.: Gen. Relativ. Gravit. 42, 1311 (2010)MATHCrossRefMathSciNetADSGoogle Scholar
  45. 45.
    Biswas R., Chakraborty S.: Astrophys. Space Sci. 326, 30 (2010)CrossRefADSGoogle Scholar
  46. 46.
    Davies P.C.W.: Proc. R. Soc. Lond. A 353, 499 (1977)CrossRefADSGoogle Scholar
  47. 47.
    Davies P.C.W.: Rep. Prog. Phys. 41, 1313 (1977)CrossRefADSGoogle Scholar
  48. 48.
    Davies P.C.W.: Class. Quantum Gravity 6, 1909 (1989)CrossRefADSGoogle Scholar
  49. 49.
    Hawking S.W., Page D.N.: Commun. Math. Phys. 87, 577 (1983)CrossRefMathSciNetADSGoogle Scholar
  50. 50.
    Biswas R., Chakraborty S.: IJTP 49, 152 (2010)MATHMathSciNetADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of MathematicsJadavpur UniversityKolkataIndia

Personalised recommendations