General Relativity and Gravitation

, Volume 43, Issue 7, pp 1943–1952 | Cite as

Gravitational wave detection with single-laser atom interferometers

Research Article


We present a new general design approach of a broad-band detector of gravitational radiation that relies on two atom interferometers separated by a distance L. In this scheme, only one arm and one laser will be used for operating the two atom interferometers. We consider atoms in the atom interferometers not only as perfect inertial reference sensors, but also as highly stable clocks. Atomic coherence is intrinsically stable and can be many orders of magnitude more stable than a laser. The unique one-laser configuration allows us to then apply time-delay interferometry to the responses of the two atom interferometers, thereby canceling the laser phase fluctuations while preserving the gravitational wave signal in the resulting data set. Our approach appears very promising. We plan to investigate further its practicality and detailed sensitivity analysis.


Gravitational waves Atom interferometry Time-delay interferometry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Thorne, K.S.: In: Hawking, S.W., Israel, W. (eds.) 300 Years of Gravitation. Cambridge University Press, Cambridge (1987)Google Scholar
  2. 2.
    Bender, P., Danzmann, K.: The LISA Study Team: Laser Interferometer Space Antenna for the Detection of Gravitational Waves, Pre-Phase A Report, MPQ 233. Max-Planck-Institüt für Quantenoptik, Garching (1998)Google Scholar
  3. 3.
    Tinto M., Armstrong J.W.: Phys. Rev. D 59, 102003 (1999)ADSCrossRefGoogle Scholar
  4. 4.
    LIGO Project: California Institute of Technology, Massachusetts Institute of Technology (USA). In: Proposal to the National Science Foundation, A Laser Interferometer Gravitational-Wave Observatory (LIGO), volumes 1 and 2, 1989 (unpublished)Google Scholar
  5. 5.
    Weiss, R.: In: Ashby, N., Bartlett, D., Wyss, W. (eds.) Proceedings of the Twelfth International Conference on General Relativity and Gravitation, pp. 331. Cambridge University Press, Cambridge (1990)Google Scholar
  6. 6.
    Drever, R.W.P.: In: Natalie, D., Tsvi, P. (eds.) Gravitational Radiation. North-Holland, Amsterdam (1982)Google Scholar
  7. 7.
    Armstrong J.W.: Living Rev. Relativ. 9, 1 (2006)ADSGoogle Scholar
  8. 8.
    Kasevich M., Chu S.: Phys. Rev. Lett. 67, 181 (1991)ADSCrossRefGoogle Scholar
  9. 9.
    Chiao R.Y., Speliotopoulos A.D.: J. Mod. Opt. 51, 861 (2004)ADSMATHGoogle Scholar
  10. 10.
    Speliotopoulos A.D., Chiao R.Y.: Phys. Rev. D 69, 084013 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    Foffa S., Gasparini A., Papucci M., Sturani R.: Phys. Rev. D 73, 022001 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    Roura A., Brill D.R., Hu B.L., Misner C.W., Phillips W.D.: Phys. Rev. D 73, 084018 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    Delva P., Angonin M.C., Tourrenc P.: Phys. Lett. A 357, 249–254 (2006)ADSMATHCrossRefGoogle Scholar
  14. 14.
    Tino G.M., Vetrano F.: Class. Quantum Grav. 24, 2167–2178 (2007)ADSMATHCrossRefGoogle Scholar
  15. 15.
    Dimopoulos S., Graham P.W., Hogan J.M., Kasevich M.A., Rajendram S.: Phys. Rev. D 78, 122002 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    Tinto M., Dhurandhar S.V.: Living Rev. Relativ. 8, 4 (2005)ADSGoogle Scholar
  17. 17.
    Rosenband T. et al.: Science 319, 1808 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    Madej, A.A., Bernard, J.E.: In: Luiten, A.N. (eds.): Frequency Measurement and Control, pp. 153. Springer, Berlin (2001)Google Scholar
  19. 19.
    Yu N., Dehmelt H., Nagourney W.: Proc. Natl. Acad. Sci. 89, 7289 (1992)ADSCrossRefGoogle Scholar
  20. 20.
    Dehmelt H., Yu N., Nagourney W.: Proc. Natl. Acad. Sci. 86, 3938 (1989)ADSCrossRefGoogle Scholar
  21. 21.
    Ludlow A.D., Huang X., Notcutt M., Zanon-Willette T., Foreman S.M., Boyd M.M., Blatt S., Ye J.: Opt. Lett. 32, 641 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    Wilpers G., Oates C.W., Diddams S.A., Bartels A., Fortier T.M., Oskay W.H., Bergquist J.C., Jefferts S.R., Heavner T.P., Parker T.E., Hollberg L.: Metrologia 44, 146 (2007)ADSCrossRefGoogle Scholar
  23. 23.
  24. 24.
    Borde C.J., Salomon C., Avrillier S., Van Lerberhe A., Breant C., Bassi D., Scoles G.: Phys. Rev. A 30, 1836 (1984)ADSCrossRefGoogle Scholar
  25. 25.
    Farrar T.C.: An Introduction to Pulse NMR Spectroscopy. Farragut Press, Chicago (1987)Google Scholar
  26. 26.
    Estabrook F.B., Wahlquist H.D.: Gen. Relativ. Gravit. 6, 439 (1975)ADSCrossRefGoogle Scholar
  27. 27.
    Dimopoulos S., Graham P.W., Hogan J.M., Kasevich M.A.: Phys. Rev. D 78, 042003 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    Mueller H., Chiow S., Long Q., Herrmann S., Chu S.: Phys. Rev. Lett. 100, 180405 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    Mueller H., Chiow S., Herrmann S., Chu S.: Phys. Rev. Lett. 102, 240403 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Jet Propulsion Laboratory, MS 298PasadenaUSA
  2. 2.Jet Propulsion Laboratory, MS 238-737PasadenaUSA

Personalised recommendations