Skip to main content
Log in

Optical detector topology for third-generation gravitational wave observatories

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The third generation of gravitational wave observatories, with the aim of providing 100 times better sensitivity than currently operating interferometers, is expected to establish the evolving field of gravitational wave astronomy. A key element, required to achieve this ambitious sensitivity goal, is the exploration of new interferometer geometries, topologies and configurations. In this article we review the current status of the ongoing design work for third-generation gravitational wave observatories. The main focus is the evaluation of the detector geometry and detector topology. In addition we discuss some promising detector configurations and potential noise reduction schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Freise A. et al.: Triple Michelson interferometer for a third-generation gravitational wave detector. Class. Quant. Grav. 26, 085012 (2009)

    Article  ADS  Google Scholar 

  2. Jaranowski P., Królak A., Schutz B.F.: Data analysis of gravitational-wave signals from spinning neutron stars: the signal and its detection. Phys. Rev. D 58, 063001 (1998)

    Article  ADS  Google Scholar 

  3. Winkler, W., et al.: Plans for a large gravitational wave antenna in Germany. MPQ report 101, presented by A Rüdiger at the 4th Marcel Grossmann Meeting, Rome (1985)

  4. Gürsel Y., Tinto M.: Near optimal solution to the inverse problem for gravitational-wave bursts. Phys. Rev. D 40, 3884 (1989)

    Article  ADS  Google Scholar 

  5. Will, C.M.: The Confrontation between General Relativity and Experiment. Living Rev. Relativ. 9 (2006)

  6. GWIC subcommittee Global Roadmap for the field of gravitational wave science. https://gwic.ligo.org/roadmap/Roadmap_050609.pdf (2009)

  7. Viceré A.: Advanced gravitational wave detectors and the global network. Int. J. M. Phys. A 20, 7045–7053 (2005)

    Article  ADS  Google Scholar 

  8. Sathyaprakash, B.S., Schutz, B.F.: Physics, astrophysics and cosmology with gravitational waves. Living Rev. Relativ. 12 (2009)

  9. Grishchuk L.P. et al.: Gravitational wave astronomy: in anticipation of first sources to be detected. Phys. Usp. 44, 1–51 (2001)

    Article  ADS  Google Scholar 

  10. Fryer, C.L., New, K.C.B.: Gravitational waves from gravitational collapse. Living Rev. Relativ. 6 (2003)

  11. Schutz B.F.: Determining the hubble constant from gravitational wave observations. Nature 323, 310–311 (1986)

    Article  ADS  Google Scholar 

  12. Bonazzola, S., Gourgoulhon, E.: In: Marck, J.-A., Lasota, J.-P. (eds.) Relativistic Gravitation and Gravitational Radiation, p. 151. Cambridge University Press, Cambridge (1997)

  13. Ushomirsky, G., Bildsten, L., Cutler, C.: Gravitational waves from low-mass X-ray binaries: a status report. arXiv:astro-ph/0001129v1

  14. LIGO Scientific Collaboration: Upper limits on a stochastic background of gravitational waves. Phys. Rev. Lett. 95, 221101 (2005)

    Google Scholar 

  15. Regimbau T.: Stochastic background from inspiralling double neutron stars. Phys. Rev. D 75, 043002 (2007)

    Article  ADS  Google Scholar 

  16. Allen B., Romano J.D.: Detecting a stochastic background of gravitational radiation: signal processing strategies and sensitivities. Phys. Rev. D 59, 102001 (1999)

    Article  ADS  Google Scholar 

  17. Advanced LIGO Team: Advanced LIGO Reference Design. LIGO preprint (2007) http://www.ligo.caltech.edu/docs/M/M060056-10.pdf

  18. Acernese F. et al.: (The Virgo Collaboration): Improving the timing precision for inspiral signals found by interferometric gravitational wave detectors. Class. Quant. Grav. 24, S617–S625 (2007)

    Article  MATH  ADS  Google Scholar 

  19. Mitra S. et al.: Gravitational wave radiometry: mapping a stochastic gravitational wave background. Phys. Rev. D 77, 042002 (2008)

    Article  ADS  Google Scholar 

  20. Hild, S., et al.: (2008) http://arxiv.org/abs/0810.0604

  21. Einstein Telescope project webpage http://www.et-gw.eu

  22. Hild S. et al.: A xylophone configuration for a third-generation gravitational wave detector Class. Quant. Grav. 27, 015003 (2010)

    Article  ADS  Google Scholar 

  23. Buonanno A., Chen Y.: Quantum noise in second generation, signal-recycled laser interferometric gravitational-wave detectors. Phys. Rev. D 64, 042006 (2001)

    Article  ADS  Google Scholar 

  24. Caves C.: Quantum-mechanical noise in an interferometer. Phys. Rev. D 23, 1693–1708 (1981)

    Article  ADS  Google Scholar 

  25. Meers B.J.: Recycling in laser-interferometric gravitational-wave detectors. Phys. Rev. D 38, 2317–2326 (1988)

    Article  ADS  Google Scholar 

  26. Kimble H.J. et al.: Conversion of conventional gravitational-wave interferometers into quantum non demolition interferometers by modifying their input and/or output optics. Phys. Rev. D 65, 022002 (2002)

    Article  ADS  Google Scholar 

  27. Harry G.M. et al.: Titania-doped tantala/silica coatings for gravitational-wave detection. Class. Quant. Grav. 24, 405–415 (2007)

    Article  ADS  Google Scholar 

  28. Somiya K., Yamamoto K.: Phys. Rev. D 79, 102004 (2009)

    Article  ADS  Google Scholar 

  29. Cella, G., et al.: Mitigating noise in the 1–10 Hz band. Gen. Relativ. Gravit.

  30. Gorodetsky M.L.: Thermal noises and noise compensation in high-reflection multilayer coating. Phys. Lett. A 372, 6813–6822 (2008)

    Article  ADS  Google Scholar 

  31. Vinet, J.-Y.: On special optical modes and thermal issues in advanced gravitational wave interferometric detectors. Living Rev. Relativ. 12 (2009)

  32. Rowan S., Hough J. et al.: Thermal noise and material issues for gravitational wave detectors. Phys. Lett. A 347, 25–32 (2005)

    Article  ADS  Google Scholar 

  33. Khalili F.: Reducing the mirrors coating noise in laser gravitational-wave antennae by means of double mirrors. Phys. Lett. A 334, 67–72 (2005)

    Article  ADS  Google Scholar 

  34. Goßler S. et al.: Coating-free mirrors for high precision interferometric experiments. Phys. Rev. A 76, 053810 (2007)

    Article  ADS  Google Scholar 

  35. D’Ambrosio E.: Non-spherical mirrors to reduce thermoelastic noise in advanced gravitational wave interferometers. Phys. Rev. D 67, 102004 (2003)

    Article  ADS  Google Scholar 

  36. D’Ambrosio E. et al.: Advanced LIGO: non-Gaussian beams. Class. Quant. Grav. 21, 867 (2004)

    Article  Google Scholar 

  37. Vinet J.-Y.: Mirror thermal noise in flat-beam cavities for advanced gravitational wave interferometers. Class. Quant. Grav. 22, 1395–1404 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  38. Agresti J. et al.: Design and construction of a prototype of a flat top beam interferometer and initial tests. J. Phys. Conf. Ser. 32, 301–308 (2006)

    Article  ADS  Google Scholar 

  39. Mours B. et al.: Thermal noise reduction in interferometric gravitational wave antennas: using high order TEM modes. Class. Quant. Grav. 23, 5777–5784 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  40. Chelkowski S. et al.: Prospects of higher-order Laguerre–Gauss modes in future gravitational wave detectors. Phys. Rev. D 79, 122002 (2009)

    Article  ADS  Google Scholar 

  41. Beyesdorf P. et al.: Cavity with a deformable mirror for tailoring the shape of the eigenmode. Appl. Opt. 45, 26 (2006)

    Google Scholar 

  42. Tarallo M.G. et al.: Generation of a Flat-top laser beam for gravitational wave detectors by means of a non-spherical Fabry-Perot resonator. Appl. Opt. 46, 26 (2007)

    Article  Google Scholar 

  43. Avino S. et al.: Generation of non-Gaussian flat laser beams. Phys. Lett. A 355, 258–261 (2006)

    Article  ADS  Google Scholar 

  44. Allen L. et al.: Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A 45, 11 (1992)

    Article  ADS  Google Scholar 

  45. Heckemberg, N.R., et al.: Mechanical effects of optical vortices. arXiv:physics/0312007

  46. Mair A. et al.: Entanglement of the orbital angular momentum states of photons. Nature 412, 313 (2001)

    Article  ADS  Google Scholar 

  47. Kennedy S.A. et al.: Creation of Laguerre–Gaussian laser modes using diffractive optics. Phys. Rev. A 66, 043801 (2002)

    Article  ADS  Google Scholar 

  48. Beijersbergen M.W. et al.: Astigmatic laser mode converters and transfer of orbital angular momentum. Opt. Commun. 96, 123–132 (1993)

    Article  ADS  Google Scholar 

  49. Chu S. et al.: Doughnut-like beam generation of Laguerre-Gaussian mode with extremely high mode purity. Opt. Commun. 281, 1647–1653 (2008)

    Article  ADS  Google Scholar 

  50. Arlt J. et al.: The production of multiringed Laguerre–Gaussian modes by computer-generated holograms. J. Modern Opt. 45, 1231–1237 (1995)

    Article  ADS  Google Scholar 

  51. Freise, A.: The next generation of interferometry: multi-frequency optical modelling, control concepts and implementation. PhD thesis, University of Hannover (2003)

  52. Danilishin, S., et al.: Gen. Relativ. Gravit.

  53. Müller-Ebhard, H., et al.: Review of quantum non-demolition schemes for the Einstein Telescope. ET note ET-010-09 (2009)

  54. Harms J., Chen Y. et al.: Squeezed-input, optical-spring, signal-recycled gravitational-wave detectors. Phys. Rev. D 68, 042001 (2003)

    Article  ADS  Google Scholar 

  55. Buonanno A., Chen Y.: Improving the sensitivity to gravitational-wave sources by modifying the input-output optics of advanced interferometers. Phys. Rev. D 69, 102004 (2004)

    Article  ADS  Google Scholar 

  56. Chelkowski S., Vahlbruch H. et al.: Experimental characterization of frequency-dependent squeezed light. Phys. Rev. A 71, 013806 (2005)

    Article  ADS  Google Scholar 

  57. Vahlbruch H., Chelkowski S. et al.: Demonstration of a squeezed-light-enhanced power- and signal-recycled Michelson interferometer. Phys. Rev. Lett. 95, 211102 (2005)

    Article  ADS  Google Scholar 

  58. Rehbein H. et al.: Phys. Rev. D 76, 062002 (2007)

    Article  ADS  Google Scholar 

  59. Drever R.: Fabry-Perot cavity gravity-wave detectors. In: Blair, D. (eds) The detection of gravitational waves, pp. 306–328. Cambridge University Press, Cambridge (1991)

    Chapter  Google Scholar 

  60. Aso Y. et al.: Phys. Lett. A 327, 1 (2004)

    Article  MATH  ADS  Google Scholar 

  61. Varvella, M., et al.: Astropart. Phys. 21, 325 (2004); Experimental demonstration by R. Drever (not published)

  62. Giazotto A.: Phys. Lett. A 245, 203 (1998)

    Article  ADS  Google Scholar 

  63. Somiya K.: Phys. Rev. Lett. 102, 230801 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Freise.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freise, A., Hild, S., Somiya, K. et al. Optical detector topology for third-generation gravitational wave observatories. Gen Relativ Gravit 43, 537–567 (2011). https://doi.org/10.1007/s10714-010-1018-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-010-1018-0

Keywords

Navigation