Advertisement

General Relativity and Gravitation

, Volume 43, Issue 2, pp 537–567 | Cite as

Optical detector topology for third-generation gravitational wave observatories

  • Andreas Freise
  • Stefan Hild
  • Kentaro Somiya
  • Ken A. Strain
  • Andrea Viceré
  • Matteo Barsuglia
  • Simon Chelkowski
Research Article

Abstract

The third generation of gravitational wave observatories, with the aim of providing 100 times better sensitivity than currently operating interferometers, is expected to establish the evolving field of gravitational wave astronomy. A key element, required to achieve this ambitious sensitivity goal, is the exploration of new interferometer geometries, topologies and configurations. In this article we review the current status of the ongoing design work for third-generation gravitational wave observatories. The main focus is the evaluation of the detector geometry and detector topology. In addition we discuss some promising detector configurations and potential noise reduction schemes.

Keywords

Gravitational wave detector Laser interferometer Topology Optical design 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Freise A. et al.: Triple Michelson interferometer for a third-generation gravitational wave detector. Class. Quant. Grav. 26, 085012 (2009)CrossRefADSGoogle Scholar
  2. 2.
    Jaranowski P., Królak A., Schutz B.F.: Data analysis of gravitational-wave signals from spinning neutron stars: the signal and its detection. Phys. Rev. D 58, 063001 (1998)CrossRefADSGoogle Scholar
  3. 3.
    Winkler, W., et al.: Plans for a large gravitational wave antenna in Germany. MPQ report 101, presented by A Rüdiger at the 4th Marcel Grossmann Meeting, Rome (1985)Google Scholar
  4. 4.
    Gürsel Y., Tinto M.: Near optimal solution to the inverse problem for gravitational-wave bursts. Phys. Rev. D 40, 3884 (1989)CrossRefADSGoogle Scholar
  5. 5.
    Will, C.M.: The Confrontation between General Relativity and Experiment. Living Rev. Relativ. 9 (2006)Google Scholar
  6. 6.
    GWIC subcommittee Global Roadmap for the field of gravitational wave science. https://gwic.ligo.org/roadmap/Roadmap_050609.pdf (2009)
  7. 7.
    Viceré A.: Advanced gravitational wave detectors and the global network. Int. J. M. Phys. A 20, 7045–7053 (2005)CrossRefADSGoogle Scholar
  8. 8.
    Sathyaprakash, B.S., Schutz, B.F.: Physics, astrophysics and cosmology with gravitational waves. Living Rev. Relativ. 12 (2009)Google Scholar
  9. 9.
    Grishchuk L.P. et al.: Gravitational wave astronomy: in anticipation of first sources to be detected. Phys. Usp. 44, 1–51 (2001)CrossRefADSGoogle Scholar
  10. 10.
    Fryer, C.L., New, K.C.B.: Gravitational waves from gravitational collapse. Living Rev. Relativ. 6 (2003)Google Scholar
  11. 11.
    Schutz B.F.: Determining the hubble constant from gravitational wave observations. Nature 323, 310–311 (1986)CrossRefADSGoogle Scholar
  12. 12.
    Bonazzola, S., Gourgoulhon, E.: In: Marck, J.-A., Lasota, J.-P. (eds.) Relativistic Gravitation and Gravitational Radiation, p. 151. Cambridge University Press, Cambridge (1997)Google Scholar
  13. 13.
    Ushomirsky, G., Bildsten, L., Cutler, C.: Gravitational waves from low-mass X-ray binaries: a status report. arXiv:astro-ph/0001129v1Google Scholar
  14. 14.
    LIGO Scientific Collaboration: Upper limits on a stochastic background of gravitational waves. Phys. Rev. Lett. 95, 221101 (2005)Google Scholar
  15. 15.
    Regimbau T.: Stochastic background from inspiralling double neutron stars. Phys. Rev. D 75, 043002 (2007)CrossRefADSGoogle Scholar
  16. 16.
    Allen B., Romano J.D.: Detecting a stochastic background of gravitational radiation: signal processing strategies and sensitivities. Phys. Rev. D 59, 102001 (1999)CrossRefADSGoogle Scholar
  17. 17.
    Advanced LIGO Team: Advanced LIGO Reference Design. LIGO preprint (2007) http://www.ligo.caltech.edu/docs/M/M060056-10.pdf
  18. 18.
    Acernese F. et al.: (The Virgo Collaboration): Improving the timing precision for inspiral signals found by interferometric gravitational wave detectors. Class. Quant. Grav. 24, S617–S625 (2007)MATHCrossRefADSGoogle Scholar
  19. 19.
    Mitra S. et al.: Gravitational wave radiometry: mapping a stochastic gravitational wave background. Phys. Rev. D 77, 042002 (2008)CrossRefADSGoogle Scholar
  20. 20.
    Hild, S., et al.: (2008) http://arxiv.org/abs/0810.0604
  21. 21.
    Einstein Telescope project webpage http://www.et-gw.eu
  22. 22.
    Hild S. et al.: A xylophone configuration for a third-generation gravitational wave detector Class. Quant. Grav. 27, 015003 (2010)CrossRefADSGoogle Scholar
  23. 23.
    Buonanno A., Chen Y.: Quantum noise in second generation, signal-recycled laser interferometric gravitational-wave detectors. Phys. Rev. D 64, 042006 (2001)CrossRefADSGoogle Scholar
  24. 24.
    Caves C.: Quantum-mechanical noise in an interferometer. Phys. Rev. D 23, 1693–1708 (1981)CrossRefADSGoogle Scholar
  25. 25.
    Meers B.J.: Recycling in laser-interferometric gravitational-wave detectors. Phys. Rev. D 38, 2317–2326 (1988)CrossRefADSGoogle Scholar
  26. 26.
    Kimble H.J. et al.: Conversion of conventional gravitational-wave interferometers into quantum non demolition interferometers by modifying their input and/or output optics. Phys. Rev. D 65, 022002 (2002)CrossRefADSGoogle Scholar
  27. 27.
    Harry G.M. et al.: Titania-doped tantala/silica coatings for gravitational-wave detection. Class. Quant. Grav. 24, 405–415 (2007)CrossRefADSGoogle Scholar
  28. 28.
    Somiya K., Yamamoto K.: Phys. Rev. D 79, 102004 (2009)CrossRefADSGoogle Scholar
  29. 29.
    Cella, G., et al.: Mitigating noise in the 1–10 Hz band. Gen. Relativ. Gravit.Google Scholar
  30. 30.
    Gorodetsky M.L.: Thermal noises and noise compensation in high-reflection multilayer coating. Phys. Lett. A 372, 6813–6822 (2008)CrossRefADSGoogle Scholar
  31. 31.
    Vinet, J.-Y.: On special optical modes and thermal issues in advanced gravitational wave interferometric detectors. Living Rev. Relativ. 12 (2009)Google Scholar
  32. 32.
    Rowan S., Hough J. et al.: Thermal noise and material issues for gravitational wave detectors. Phys. Lett. A 347, 25–32 (2005)CrossRefADSGoogle Scholar
  33. 33.
    Khalili F.: Reducing the mirrors coating noise in laser gravitational-wave antennae by means of double mirrors. Phys. Lett. A 334, 67–72 (2005)CrossRefADSGoogle Scholar
  34. 34.
    Goßler S. et al.: Coating-free mirrors for high precision interferometric experiments. Phys. Rev. A 76, 053810 (2007)CrossRefADSGoogle Scholar
  35. 35.
    D’Ambrosio E.: Non-spherical mirrors to reduce thermoelastic noise in advanced gravitational wave interferometers. Phys. Rev. D 67, 102004 (2003)CrossRefADSGoogle Scholar
  36. 36.
    D’Ambrosio E. et al.: Advanced LIGO: non-Gaussian beams. Class. Quant. Grav. 21, 867 (2004)CrossRefGoogle Scholar
  37. 37.
    Vinet J.-Y.: Mirror thermal noise in flat-beam cavities for advanced gravitational wave interferometers. Class. Quant. Grav. 22, 1395–1404 (2005)MATHCrossRefMathSciNetADSGoogle Scholar
  38. 38.
    Agresti J. et al.: Design and construction of a prototype of a flat top beam interferometer and initial tests. J. Phys. Conf. Ser. 32, 301–308 (2006)CrossRefADSGoogle Scholar
  39. 39.
    Mours B. et al.: Thermal noise reduction in interferometric gravitational wave antennas: using high order TEM modes. Class. Quant. Grav. 23, 5777–5784 (2006)MATHCrossRefMathSciNetADSGoogle Scholar
  40. 40.
    Chelkowski S. et al.: Prospects of higher-order Laguerre–Gauss modes in future gravitational wave detectors. Phys. Rev. D 79, 122002 (2009)CrossRefADSGoogle Scholar
  41. 41.
    Beyesdorf P. et al.: Cavity with a deformable mirror for tailoring the shape of the eigenmode. Appl. Opt. 45, 26 (2006)Google Scholar
  42. 42.
    Tarallo M.G. et al.: Generation of a Flat-top laser beam for gravitational wave detectors by means of a non-spherical Fabry-Perot resonator. Appl. Opt. 46, 26 (2007)CrossRefGoogle Scholar
  43. 43.
    Avino S. et al.: Generation of non-Gaussian flat laser beams. Phys. Lett. A 355, 258–261 (2006)CrossRefADSGoogle Scholar
  44. 44.
    Allen L. et al.: Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A 45, 11 (1992)CrossRefADSGoogle Scholar
  45. 45.
    Heckemberg, N.R., et al.: Mechanical effects of optical vortices. arXiv:physics/0312007Google Scholar
  46. 46.
    Mair A. et al.: Entanglement of the orbital angular momentum states of photons. Nature 412, 313 (2001)CrossRefADSGoogle Scholar
  47. 47.
    Kennedy S.A. et al.: Creation of Laguerre–Gaussian laser modes using diffractive optics. Phys. Rev. A 66, 043801 (2002)CrossRefADSGoogle Scholar
  48. 48.
    Beijersbergen M.W. et al.: Astigmatic laser mode converters and transfer of orbital angular momentum. Opt. Commun. 96, 123–132 (1993)CrossRefADSGoogle Scholar
  49. 49.
    Chu S. et al.: Doughnut-like beam generation of Laguerre-Gaussian mode with extremely high mode purity. Opt. Commun. 281, 1647–1653 (2008)CrossRefADSGoogle Scholar
  50. 50.
    Arlt J. et al.: The production of multiringed Laguerre–Gaussian modes by computer-generated holograms. J. Modern Opt. 45, 1231–1237 (1995)CrossRefADSGoogle Scholar
  51. 51.
    Freise, A.: The next generation of interferometry: multi-frequency optical modelling, control concepts and implementation. PhD thesis, University of Hannover (2003)Google Scholar
  52. 52.
    Danilishin, S., et al.: Gen. Relativ. Gravit.Google Scholar
  53. 53.
    Müller-Ebhard, H., et al.: Review of quantum non-demolition schemes for the Einstein Telescope. ET note ET-010-09 (2009)Google Scholar
  54. 54.
    Harms J., Chen Y. et al.: Squeezed-input, optical-spring, signal-recycled gravitational-wave detectors. Phys. Rev. D 68, 042001 (2003)CrossRefADSGoogle Scholar
  55. 55.
    Buonanno A., Chen Y.: Improving the sensitivity to gravitational-wave sources by modifying the input-output optics of advanced interferometers. Phys. Rev. D 69, 102004 (2004)CrossRefADSGoogle Scholar
  56. 56.
    Chelkowski S., Vahlbruch H. et al.: Experimental characterization of frequency-dependent squeezed light. Phys. Rev. A 71, 013806 (2005)CrossRefADSGoogle Scholar
  57. 57.
    Vahlbruch H., Chelkowski S. et al.: Demonstration of a squeezed-light-enhanced power- and signal-recycled Michelson interferometer. Phys. Rev. Lett. 95, 211102 (2005)CrossRefADSGoogle Scholar
  58. 58.
    Rehbein H. et al.: Phys. Rev. D 76, 062002 (2007)CrossRefADSGoogle Scholar
  59. 59.
    Drever R.: Fabry-Perot cavity gravity-wave detectors. In: Blair, D. (eds) The detection of gravitational waves, pp. 306–328. Cambridge University Press, Cambridge (1991)CrossRefGoogle Scholar
  60. 60.
    Aso Y. et al.: Phys. Lett. A 327, 1 (2004)MATHCrossRefADSGoogle Scholar
  61. 61.
    Varvella, M., et al.: Astropart. Phys. 21, 325 (2004); Experimental demonstration by R. Drever (not published)Google Scholar
  62. 62.
    Giazotto A.: Phys. Lett. A 245, 203 (1998)CrossRefADSGoogle Scholar
  63. 63.
    Somiya K.: Phys. Rev. Lett. 102, 230801 (2009)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Andreas Freise
    • 1
  • Stefan Hild
    • 2
  • Kentaro Somiya
    • 3
  • Ken A. Strain
    • 2
  • Andrea Viceré
    • 4
  • Matteo Barsuglia
    • 5
  • Simon Chelkowski
    • 1
  1. 1.School of Physics and AstronomyUniversity of BirminghamBirminghamUK
  2. 2.Institute for Gravitational ResearchUniversity of GlasgowGlasgowUK
  3. 3.Theoretical Astrophysics, California Institute of TechnologyPasadenaUSA
  4. 4.INFN, Sezione di Firenze, Universitá degli Studi di Urbino “Carlo Bo”UrbinoItaly
  5. 5.AstroParticule et Cosmologie, CNRS UMR7164ParisFrance

Personalised recommendations