General Relativity and Gravitation

, Volume 42, Issue 6, pp 1457–1467 | Cite as

The effect of negative-energy shells on the Schwarzschild black hole

  • Jeffrey S. Hazboun
  • Tevian Dray
Research Article


We construct Penrose diagrams for Schwarzschild spacetimes joined by massless shells of matter, in the process correcting minor flaws in the similar diagrams drawn by Dray and ’t Hooft (Commun Math Phys 99:613–625, 1985), and confirming their result that such shells generate a horizon shift. We then consider shells with negative energy density, showing that the horizon shift in this case allows for travel between the heretofore causally separated exterior regions of the Schwarzschild geometry. These drawing techniques are then used to investigate the properties of successive shells, joining multiple Schwarzschild regions. Again, the presence of negative-energy shells leads to a causal connection between the exterior regions, even in (some) cases with two successive shells of equal but opposite total energy.


Black holes Negative energy Wormholes Shells 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Penrose R.: Zero rest-mass fields including gravitation: asymptotic behavior. Proc. R. Soc. A 284, 159–203 (1965)MATHCrossRefMathSciNetADSGoogle Scholar
  2. 2.
    Carter B.: Complete analytic extension of the symmetry axis of Kerr’s solution of Einstein’s equations. Phys. Rev. 141, 1242 (1966)CrossRefMathSciNetADSGoogle Scholar
  3. 3.
    Geroch R.: Asymptotic structure of space–time. In: Esposito, F.P., Witten, L. (eds) Asymptotic Structure of Space–Time, pp. 1–105. Plenum Press, New York (1977)Google Scholar
  4. 4.
    Barrabés C., Hogan P.A.: Singular Null Hypersurfaces in General Relativity: Light-Like signals from Violent Astrophysical Events. World Scientific, New Jersey (2003)MATHGoogle Scholar
  5. 5.
    Dray T., ’t Hooft G.: The effect of spherical shells of matter on the Schwarzschild black hole. Commun. Math. Phys. 99, 613–625 (1985)CrossRefMathSciNetADSGoogle Scholar
  6. 6.
    Carroll S.M.: Spacetime and Geometry: An Introduction to General Relativity. Addison and Wesley, San Fransisco (2003)Google Scholar
  7. 7.
    Dray T., ’t Hooft G.: The gravitational shock wave of a massless particle. Nucl. Phys. B 253, 173–188 (1985)CrossRefMathSciNetADSGoogle Scholar
  8. 8.
    Corless R.M., Gonnet G.H., Hare D.E.G., Jeffrey D.J., Knuth D.E.: On the Lambertw function. Adv. Comput. Math. 5, 329 (1996)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Dray T., Padmanabhan T.: Conserved quantities from piecewise Killing vectors. Gen. Relativ. Gravit. 21, 741–745 (1989)CrossRefMathSciNetADSGoogle Scholar
  10. 10.
    Ford L.H., Roman T.A.: Motion of inertial observers through negative energy. Phys. Rev. D 48, 776–782 (1993)CrossRefADSGoogle Scholar
  11. 11.
    Morris M.S., Thorne K.S.: Wormholes in space-time and their use for interstellar travel: a tool for teaching general relativity. Am. J. Phys. 56, 395–412 (1988)CrossRefMathSciNetADSGoogle Scholar
  12. 12.
    Morris M.S., Thorne K.S., Yurtsever U.: Wormholes, time machines, and the weak energy condition. Phys. Rev. Lett. 61, 1446–1449 (1988)CrossRefADSGoogle Scholar
  13. 13.
    Visser M.: Traversable wormholes: some simple examples. Phys. Rev. D 39, 3182–3184 (1989)CrossRefMathSciNetADSGoogle Scholar
  14. 14.
    Visser M.: Traversable wormholes from surgically modified Schwarzschild space–times. Nucl. Phys. B 328, 203–212 (1989)CrossRefMathSciNetADSGoogle Scholar
  15. 15.
    Hazboun, J.S.: The effects of negative-energy shells on schwarzschild geometry. Master’s thesis, Oregon State University (2008)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of PhysicsOregon State UniversityCorvallisUSA
  2. 2.Department of MathematicsOregon State UniversityCorvallisUSA

Personalised recommendations