Skip to main content
Log in

Einstein energy associated with the Friedmann–Robertson–Walker metric

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Following Einstein’s definition of Lagrangian density and gravitational field energy density (Einstein in Ann Phys Lpz 49:806, 1916, Einstein in Phys Z 19:115, 1918, Pauli in Theory of Relativity, B.I. Publications, Mumbai, 1963), Tolman derived a general formula for the total matter plus gravitational field energy (P 0) of an arbitrary system (Tolman in Phys Rev 35:875, 1930, Tolman in Relativity, Thermodynamics & Cosmology, Clarendon Press, Oxford, 1962, Xulu in hep-th/0308070, 2003). For a static isolated system, in quasi-Cartesian coordinates, this formula leads to the well known result \({P_0 = \int \sqrt{-g} (T_0^0 - T_1^1 - T_2^2 - T_3^3) d^3 x,}\) where g is the determinant of the metric tensor and \({T^a_b}\) is the energy momentum tensor of the matter. Though in the literature, this is known as “Tolman Mass”, it must be realized that this is essentially “Einstein Mass” because the underlying pseudo-tensor here is due to Einstein. In fact, Landau–Lifshitz obtained the same expression for the “inertial mass” of a static isolated system without using any pseudo-tensor at all and which points to physical significance and correctness of Einstein Mass (Landau, Lifshitz in The Classical Theory of Fields, Pergamon Press, Oxford, 1962)! For the first time we apply this general formula to find an expression for P 0 for the Friedmann–Robertson–Walker (FRW) metric by using the same quasi-Cartesian basis. As we analyze this new result, it transpires that, physically, a spatially flat model having no cosmological constant is preferred. Eventually, it is seen that conservation of P 0 is honoured only in the static limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Einstein A.: Ann. Phys. Lpz. 49, 806 (1916)

    Google Scholar 

  2. Einstein A.: Phys. Z 19, 115 (1918)

    Google Scholar 

  3. Pauli, W.: Theory of Relativity. B.I. Publications, Mumbai (1963) (Trans. by G. Field)

  4. Tolman R.C.: Phys. Rev. 35(8), 875 (1930)

    Article  ADS  Google Scholar 

  5. Tolman R.C.: Relativity, Thermodynamics & Cosmology. Clarendon Press, Oxford (1962)

    Google Scholar 

  6. Xulu, S.S.: hep-th/0308070 (2003)

  7. Landau L.D., Lifshitz E.M.: The Classical Theory of Fields, 2nd edn. Pergamon Press, Oxford (1962)

    MATH  Google Scholar 

  8. Favata M.: Phys. Rev. D 63, 064013 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  9. Einstein A.: Berlin Ber., 448 (1918)

  10. Rosen N.: Phys. Rev. 110, 291 (1958)

    Article  ADS  Google Scholar 

  11. Rosen N., Virbharda K.S.: Gen. Rel. Grav. 25, 429 (1993)

    Article  MATH  ADS  Google Scholar 

  12. Møller C.: Ann. Phys. (NY) 4, 347 (1958)

    Article  ADS  Google Scholar 

  13. Szabados L.B.: Living Rev. Rel. 7, 4 (2004)

    Google Scholar 

  14. Chang A.-C., Nester J.M., Chen C.-M.: Phys. Rev. Lett. 83, 1897 (1999)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. Stephani S.: General Relativity. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  16. Maartens R., Maharaj S.D.: Class. Q. Grav. 3, 1005 (1986)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. von Freud P.: Ann. Math. 40, 417 (1939)

    Article  MathSciNet  Google Scholar 

  18. Herrera L., Di Prisco A., Hernández-Pastora JL, Santos N.O.: Phys. Lett. A 237, 113 (1998)

    Article  ADS  Google Scholar 

  19. Herrera L., Barreto W., Di Prisco A., Santos N.O.: Phys. Rev. D 65(10), 104004 (2002)

    Article  ADS  Google Scholar 

  20. Bondi H., van der Burg M.G.J., Metzner A.W.K.: Proc. R. Soc. London A 269, 21 (1962)

    Article  MATH  ADS  Google Scholar 

  21. Geroch R.P., Winicour J.: J. Math. Phys. 22, 803 (1981)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. Penrose R.: Proc. Roy. Soc. London A 284, 159 (1965)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. Wald R.M.: General Relativity. University Chicago Press, Chicago (1984)

    MATH  Google Scholar 

  24. Mitra, A.: Phys. Rev. D74 024010 (2006). arXiv:gr-qc/0605066

  25. Mitra, A.: arXiv:0806.0706 (2008)

  26. Baryshev Yu., Teerikpori P.: Discovery of Cosmic Fractals. World Scientific, Singapore (2002)

    Google Scholar 

  27. Mitra, A.: Practical Cosmology. In: Baryshev, Y.V., Taganov, I.N., Teerikorpi, P. (eds.) Proceedings of the International Conference held at Russian Geographical Society. TIN, St.-Petersburg, vol. 1, pp. 304–313 (2008). ISBN 978-5-902632. arXiv:0907.2532

  28. Mitra, A.: Practical Cosmology. In: Baryshev, Y.V., Taganov, I.N., Teerikorpi, P. (eds.) Proceedings of the International Conference held at Russian Geographical Society. TIN, St.-Petersburg, vol. 2, pp. 42–51 (2008). ISBN 978-5-902632. arXiv:0907.1521

  29. Faraoni V., Cooperstock F.I.: Astrophys. J. 587(2), 483 (2003)

    Article  ADS  Google Scholar 

  30. Vishwakarma R.G.: Mon. Not. Roy. Astron. Soc. 345(2), 545 (2003)

    Article  ADS  Google Scholar 

  31. Vishwakarma R.G.: Mon. Not. Roy. Astron. Soc. 361(4), 1382 (2005)

    Article  ADS  Google Scholar 

  32. Crawford, D.F.: arXiv:0901.4169

  33. Cwarford, D.F.: arXiv:0901.4172

  34. Wand D.: Nat. Phys. 5(2), 89 (2009)

    Article  Google Scholar 

  35. Mitra A.: New Astron. 12(2), 146 (2006)

    Article  ADS  Google Scholar 

  36. Taub, A.H.: Ann. Inst. Henri Poincare, IX(2), 153 (1968). http://www.numdam.org/numdam-bin/fitem?id=AIHPA-1968-9-2-153-0

  37. Mansouri, R.: Ann. Inst. Henri Poincare, XXVII(2), 173 (1977). http://www.numdam.org/numdam-bin/fitem?id=AIHPA-1977–27-2-175-0

  38. Milne E.A.: Q. J. Math. 5, 64 (1934)

    Article  Google Scholar 

  39. McCrea W.H., Milne E.A.: Q. J. Math. 5, 73 (1934)

    Article  Google Scholar 

  40. Lima J.A.S., Zamchin V., Brandenberger R.: Mon. Not. Roy. Astron. Soc. 291, L1 (1997)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhas Mitra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitra, A. Einstein energy associated with the Friedmann–Robertson–Walker metric. Gen Relativ Gravit 42, 443–469 (2010). https://doi.org/10.1007/s10714-009-0863-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-009-0863-1

Keywords

Navigation