General Relativity and Gravitation

, Volume 42, Issue 3, pp 443–469 | Cite as

Einstein energy associated with the Friedmann–Robertson–Walker metric

Research Article


Following Einstein’s definition of Lagrangian density and gravitational field energy density (Einstein in Ann Phys Lpz 49:806, 1916, Einstein in Phys Z 19:115, 1918, Pauli in Theory of Relativity, B.I. Publications, Mumbai, 1963), Tolman derived a general formula for the total matter plus gravitational field energy (P 0) of an arbitrary system (Tolman in Phys Rev 35:875, 1930, Tolman in Relativity, Thermodynamics & Cosmology, Clarendon Press, Oxford, 1962, Xulu in hep-th/0308070, 2003). For a static isolated system, in quasi-Cartesian coordinates, this formula leads to the well known result \({P_0 = \int \sqrt{-g} (T_0^0 - T_1^1 - T_2^2 - T_3^3) d^3 x,}\) where g is the determinant of the metric tensor and \({T^a_b}\) is the energy momentum tensor of the matter. Though in the literature, this is known as “Tolman Mass”, it must be realized that this is essentially “Einstein Mass” because the underlying pseudo-tensor here is due to Einstein. In fact, Landau–Lifshitz obtained the same expression for the “inertial mass” of a static isolated system without using any pseudo-tensor at all and which points to physical significance and correctness of Einstein Mass (Landau, Lifshitz in The Classical Theory of Fields, Pergamon Press, Oxford, 1962)! For the first time we apply this general formula to find an expression for P 0 for the Friedmann–Robertson–Walker (FRW) metric by using the same quasi-Cartesian basis. As we analyze this new result, it transpires that, physically, a spatially flat model having no cosmological constant is preferred. Eventually, it is seen that conservation of P 0 is honoured only in the static limit.


Energy momentum tensor Einstein energy Friedmann metric 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Einstein A.: Ann. Phys. Lpz. 49, 806 (1916)Google Scholar
  2. 2.
    Einstein A.: Phys. Z 19, 115 (1918)Google Scholar
  3. 3.
    Pauli, W.: Theory of Relativity. B.I. Publications, Mumbai (1963) (Trans. by G. Field)Google Scholar
  4. 4.
    Tolman R.C.: Phys. Rev. 35(8), 875 (1930)CrossRefADSGoogle Scholar
  5. 5.
    Tolman R.C.: Relativity, Thermodynamics & Cosmology. Clarendon Press, Oxford (1962)Google Scholar
  6. 6.
    Xulu, S.S.: hep-th/0308070 (2003)Google Scholar
  7. 7.
    Landau L.D., Lifshitz E.M.: The Classical Theory of Fields, 2nd edn. Pergamon Press, Oxford (1962)MATHGoogle Scholar
  8. 8.
    Favata M.: Phys. Rev. D 63, 064013 (2001)CrossRefMathSciNetADSGoogle Scholar
  9. 9.
    Einstein A.: Berlin Ber., 448 (1918)Google Scholar
  10. 10.
    Rosen N.: Phys. Rev. 110, 291 (1958)CrossRefADSGoogle Scholar
  11. 11.
    Rosen N., Virbharda K.S.: Gen. Rel. Grav. 25, 429 (1993)MATHCrossRefADSGoogle Scholar
  12. 12.
    Møller C.: Ann. Phys. (NY) 4, 347 (1958)CrossRefADSGoogle Scholar
  13. 13.
    Szabados L.B.: Living Rev. Rel. 7, 4 (2004)Google Scholar
  14. 14.
    Chang A.-C., Nester J.M., Chen C.-M.: Phys. Rev. Lett. 83, 1897 (1999)MATHCrossRefMathSciNetADSGoogle Scholar
  15. 15.
    Stephani S.: General Relativity. Cambridge University Press, Cambridge (1996)Google Scholar
  16. 16.
    Maartens R., Maharaj S.D.: Class. Q. Grav. 3, 1005 (1986)MATHCrossRefMathSciNetADSGoogle Scholar
  17. 17.
    von Freud P.: Ann. Math. 40, 417 (1939)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Herrera L., Di Prisco A., Hernández-Pastora JL, Santos N.O.: Phys. Lett. A 237, 113 (1998)CrossRefADSGoogle Scholar
  19. 19.
    Herrera L., Barreto W., Di Prisco A., Santos N.O.: Phys. Rev. D 65(10), 104004 (2002)CrossRefADSGoogle Scholar
  20. 20.
    Bondi H., van der Burg M.G.J., Metzner A.W.K.: Proc. R. Soc. London A 269, 21 (1962)MATHCrossRefADSGoogle Scholar
  21. 21.
    Geroch R.P., Winicour J.: J. Math. Phys. 22, 803 (1981)MATHCrossRefMathSciNetADSGoogle Scholar
  22. 22.
    Penrose R.: Proc. Roy. Soc. London A 284, 159 (1965)MATHCrossRefMathSciNetADSGoogle Scholar
  23. 23.
    Wald R.M.: General Relativity. University Chicago Press, Chicago (1984)MATHGoogle Scholar
  24. 24.
    Mitra, A.: Phys. Rev. D74 024010 (2006). arXiv:gr-qc/0605066Google Scholar
  25. 25.
    Mitra, A.: arXiv:0806.0706 (2008)Google Scholar
  26. 26.
    Baryshev Yu., Teerikpori P.: Discovery of Cosmic Fractals. World Scientific, Singapore (2002)Google Scholar
  27. 27.
    Mitra, A.: Practical Cosmology. In: Baryshev, Y.V., Taganov, I.N., Teerikorpi, P. (eds.) Proceedings of the International Conference held at Russian Geographical Society. TIN, St.-Petersburg, vol. 1, pp. 304–313 (2008). ISBN 978-5-902632. arXiv:0907.2532Google Scholar
  28. 28.
    Mitra, A.: Practical Cosmology. In: Baryshev, Y.V., Taganov, I.N., Teerikorpi, P. (eds.) Proceedings of the International Conference held at Russian Geographical Society. TIN, St.-Petersburg, vol. 2, pp. 42–51 (2008). ISBN 978-5-902632. arXiv:0907.1521Google Scholar
  29. 29.
    Faraoni V., Cooperstock F.I.: Astrophys. J. 587(2), 483 (2003)CrossRefADSGoogle Scholar
  30. 30.
    Vishwakarma R.G.: Mon. Not. Roy. Astron. Soc. 345(2), 545 (2003)CrossRefADSGoogle Scholar
  31. 31.
    Vishwakarma R.G.: Mon. Not. Roy. Astron. Soc. 361(4), 1382 (2005)CrossRefADSGoogle Scholar
  32. 32.
    Crawford, D.F.: arXiv:0901.4169Google Scholar
  33. 33.
    Cwarford, D.F.: arXiv:0901.4172Google Scholar
  34. 34.
    Wand D.: Nat. Phys. 5(2), 89 (2009)CrossRefGoogle Scholar
  35. 35.
    Mitra A.: New Astron. 12(2), 146 (2006)CrossRefADSGoogle Scholar
  36. 36.
    Taub, A.H.: Ann. Inst. Henri Poincare, IX(2), 153 (1968).
  37. 37.
    Mansouri, R.: Ann. Inst. Henri Poincare, XXVII(2), 173 (1977).–27-2-175-0
  38. 38.
    Milne E.A.: Q. J. Math. 5, 64 (1934)CrossRefGoogle Scholar
  39. 39.
    McCrea W.H., Milne E.A.: Q. J. Math. 5, 73 (1934)CrossRefGoogle Scholar
  40. 40.
    Lima J.A.S., Zamchin V., Brandenberger R.: Mon. Not. Roy. Astron. Soc. 291, L1 (1997)ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Theoretical Astrophysics SectionBhabha Atomic Research CentreMumbaiIndia

Personalised recommendations