Advertisement

General Relativity and Gravitation

, Volume 41, Issue 9, pp 2017–2030 | Cite as

Geometrical order-of-magnitude estimates for spatial curvature in realistic models of the Universe

  • Thomas Buchert
  • George F. R. Ellis
  • Henk van Elst
Research Article

Abstract

The thoughts expressed in this article are based on remarks made by Jürgen Ehlers at the Albert-Einstein-Institut, Golm, Germany in July 2007. The main objective of this article is to demonstrate, in terms of plausible order-of-magnitude estimates for geometrical scalars, the relevance of spatial curvature in realistic models of the Universe that describe the dynamics of structure formation since the epoch of matter–radiation decoupling. We introduce these estimates with a commentary on the use of a quasi-Newtonian metric form in this context.

Keywords

Relativistic cosmology Inhomogeneous models Structure formation Spatial curvature 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnowitt, R., Deser, S., Misner, C.W.: The dynamics of general relativity. In: Witten, L. (ed.) Gravitation, pp. 227–265. Wiley, New York. Reprinted: 2008 Gen. Relativ. Gravit. 40, 1997–2027 (1962). [arXiv:gr-qc/0405109v1]Google Scholar
  2. 2.
    Bardeen J.M.: Gauge-invariant cosmological perturbations. Phys. Rev. D 22, 1882–1905 (1980)CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Buchert T.: On average properties of inhomogeneous fluids in general relativity: dust cosmologies. Gen. Relativ. Gravit. 32, 105–125 (2000) [arXiv:gr-qc/9906015v2]MATHCrossRefADSMathSciNetGoogle Scholar
  4. 4.
    Buchert T.: Dark energy from structure: a status report. Gen. Relativ. Gravit. 40, 467–527 (2008) [arXiv:0707.2153v3 [gr-qc]]MATHCrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Buchert T., Carfora M.: On the curvature of the present-day Universe. Class. Quantum Grav. 25, 195001 (2008) [arXiv:0803.1401v2 [gr-qc]]CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    Collins C.B., Wainwright J.: Role of shear in general-relativistic cosmological and stellar models. Phys. Rev. D 27, 1209–1218 (1983)CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Collins C.B., White A.J.: A class of shear-free perfect fluids in general relativity. II. J. Math. Phys 25, 1460–1472 (1984)MATHCrossRefADSMathSciNetGoogle Scholar
  8. 8.
    Cox D.P.G.: How far is ‘infinity’?. Gen. Relativ. Gravit. 39, 87–104 (2007)MATHCrossRefADSGoogle Scholar
  9. 9.
    Ehlers, J.: Beiträge zur relativistischen Mechanik kontinuierlicher Medien. Akad. Wiss. Lit. Mainz, Abhandl. Math.-Nat. Kl. 11, 793–837 (1961). English translation: 1993 Contributions to the relativistic mechanics of continuous media. Gen. Relativ. Gravit 25, 1225–1266Google Scholar
  10. 10.
    Ehlers J., Buchert T.: Newtonian cosmology in Lagrangian formulation: foundations and perturbation theory. Gen. Relativ. Gravit. 29, 733–764 (1997) [arXiv:astro-ph/9609036v1]MATHCrossRefADSMathSciNetGoogle Scholar
  11. 11.
    Ellis G.F.R.: Dynamics of pressure-free matter in general relativity. J. Math. Phys. 8, 1171–1194 (1967)CrossRefADSGoogle Scholar
  12. 12.
    Ellis G.F.R.: Relativistic cosmology: its nature, aims and problems. In: Bertotti, B., de Felice, F., Pascolini, A. (eds) General Relativity and Gravitation (Invited Papers and Discussion Reports of the 10th International Conference), pp. 215–288. Reidel, Dordrecht (1984)Google Scholar
  13. 13.
    Ellis, G.F.R., Buchert, T.: The universe seen at different scales. Phys. Lett. A347 (Einstein Special Issue), 38–46 (2005). [arXiv:gr-qc/0506106v2]Google Scholar
  14. 14.
    Ellis G.F.R., van Elst H.: Cosmological models (Cargèse lectures 1998). NATO Adv. Study Inst. Ser. C. Math. Phys. Sci. 541, 1–116 (1999) [arXiv:gr-qc/9812046v5]Google Scholar
  15. 15.
    van Elst H., Ellis G.F.R.: Quasi-Newtonian dust cosmologies. Class. Quantum Grav. 15, 3545–3573 (1998) [arXiv:gr-qc/9805087v2]MATHCrossRefADSGoogle Scholar
  16. 16.
    Futamase T.: An approximation scheme for constructing inhomogeneous universes in general relativity. Mon. Not. R. Astron. Soc. 237, 187–200 (1989)ADSGoogle Scholar
  17. 17.
    Futamase T.: Averaging of a locally inhomogeneous realistic universe. Phys. Rev. D 53, 681–689 (1996)CrossRefADSGoogle Scholar
  18. 18.
    Geshnizjani, G., Brandenberger, R.H.: Back reaction and the local cosmological expansion rate. Phys. Rev. D 66, 123507 (1–6) (2002). [arXiv:gr-qc/0204074v1]Google Scholar
  19. 19.
    Hinshaw G. et al.: Five-year Wilkinson microwave anisotropy probe observations: data processing, sky maps, and basic results. Astrophys. J. Suppl. 180, 225–245 (2009) [arXiv:0803.0732v2 [astro-ph]]CrossRefADSGoogle Scholar
  20. 20.
    Ishibashi A., Wald R.M.: Can the acceleration of our universe be explained by the effects of inhomogeneities? Class. Quantum Grav. 23, 235–250 (2006) [arXiv:gr-qc/0509108v3]MATHCrossRefADSMathSciNetGoogle Scholar
  21. 21.
    Kerscher M., Mecke K., Schmalzing J., Beisbart C., Buchert T., Wagner H.: Morphological fluctuations of large-scale structure: the PSCz survey. Astron. Astrophys. 373, 1–11 (2001) [arXiv:astro-ph/0101238v2]CrossRefADSGoogle Scholar
  22. 22.
    Kodama H., Sasaki M.: Cosmological perturbation theory. Prog. Theor. Phys. Suppl. 78, 1–166 (1984)CrossRefADSGoogle Scholar
  23. 23.
    Kolb, E.W., Matarrese, S., Riotto, A.: On cosmic acceleration without dark energy. New J. Phys. 8 322 (1–25) (2006). [arXiv:astro-ph/0506534v2]Google Scholar
  24. 24.
    Kolb E.W., Marra V., Matarrese S.: Description of our cosmological spacetime as a perturbed conformal Newtonian metric and implications for the backreaction proposal for the accelerating universe. Phys. Rev. D 78, 103002 (2008) [arXiv:0807.0401v3 [astro-ph]]CrossRefADSGoogle Scholar
  25. 25.
    Mukhanov V.F., Feldman H.A., Brandenberger R.H.: Theory of cosmological perturbations. Phys. Rep. 215, 203–333 (1992)CrossRefADSMathSciNetGoogle Scholar
  26. 26.
    Mukhanov V.F., Abramo L.R.W., Brandenberger R.H.: Backreaction problem for cosmological perturbations. Phys. Rev. Lett. 78, 1624–1627 (1997) [arXiv:gr-qc/9609026v1]CrossRefADSGoogle Scholar
  27. 27.
    Narlikar J.V.: Newtonian universes with shear and rotation. Mon. Not. R. Astron. Soc. 126, 203–208 (1963)MATHADSMathSciNetGoogle Scholar
  28. 28.
    Parry M.: A rule of thumb for cosmological backreaction. J. Cosmol. Astropart. Phys. JCAP 06, 016 (2006) [arXiv:astro-ph/0605159v2]CrossRefADSGoogle Scholar
  29. 29.
    Räsänen S.: Accelerated expansion from structure formation. J. Cosmol. Astropart. Phys JCAP 11, 003 (2006) [arXiv:astro-ph/0607626v3]CrossRefGoogle Scholar
  30. 30.
    Schutz B.F.: A First Course in General Relativity, 2nd reprint. Cambridge University Press, Cambridge (1988)Google Scholar
  31. 31.
    Wald R.M.: General Relativity. University of Chicago Press, Chicago (1984)MATHGoogle Scholar
  32. 32.
    White A.J., Collins C.B.: A class of shear-free perfect fluids in general relativity I. J. Math. Phys. 25, 332–337 (1984)MATHCrossRefADSMathSciNetGoogle Scholar
  33. 33.
    Wiltshire D.L.: Cosmic clocks, cosmic variance and cosmic averages. New J. Phys. 9(377), 1–66 (2007) [arXiv:gr-qc/0702082v4]Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Thomas Buchert
    • 1
  • George F. R. Ellis
    • 2
  • Henk van Elst
    • 3
  1. 1.Centre de Recherche Astrophysique de LyonUniversité Lyon 1Saint-Genis-LavalFrance
  2. 2.Cosmology and Gravity Group, Department of Mathematics and Applied MathematicsUniversity of Cape TownRondeboschSouth Africa
  3. 3.Fakultät I: BetriebswirtschaftMerkur Internationale FH KarlsruheKarlsruheGermany

Personalised recommendations