Skip to main content
Log in

Geometrical order-of-magnitude estimates for spatial curvature in realistic models of the Universe

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The thoughts expressed in this article are based on remarks made by Jürgen Ehlers at the Albert-Einstein-Institut, Golm, Germany in July 2007. The main objective of this article is to demonstrate, in terms of plausible order-of-magnitude estimates for geometrical scalars, the relevance of spatial curvature in realistic models of the Universe that describe the dynamics of structure formation since the epoch of matter–radiation decoupling. We introduce these estimates with a commentary on the use of a quasi-Newtonian metric form in this context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Arnowitt, R., Deser, S., Misner, C.W.: The dynamics of general relativity. In: Witten, L. (ed.) Gravitation, pp. 227–265. Wiley, New York. Reprinted: 2008 Gen. Relativ. Gravit. 40, 1997–2027 (1962). [arXiv:gr-qc/0405109v1]

  2. Bardeen J.M.: Gauge-invariant cosmological perturbations. Phys. Rev. D 22, 1882–1905 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  3. Buchert T.: On average properties of inhomogeneous fluids in general relativity: dust cosmologies. Gen. Relativ. Gravit. 32, 105–125 (2000) [arXiv:gr-qc/9906015v2]

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. Buchert T.: Dark energy from structure: a status report. Gen. Relativ. Gravit. 40, 467–527 (2008) [arXiv:0707.2153v3 [gr-qc]]

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Buchert T., Carfora M.: On the curvature of the present-day Universe. Class. Quantum Grav. 25, 195001 (2008) [arXiv:0803.1401v2 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  6. Collins C.B., Wainwright J.: Role of shear in general-relativistic cosmological and stellar models. Phys. Rev. D 27, 1209–1218 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  7. Collins C.B., White A.J.: A class of shear-free perfect fluids in general relativity. II. J. Math. Phys 25, 1460–1472 (1984)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Cox D.P.G.: How far is ‘infinity’?. Gen. Relativ. Gravit. 39, 87–104 (2007)

    Article  MATH  ADS  Google Scholar 

  9. Ehlers, J.: Beiträge zur relativistischen Mechanik kontinuierlicher Medien. Akad. Wiss. Lit. Mainz, Abhandl. Math.-Nat. Kl. 11, 793–837 (1961). English translation: 1993 Contributions to the relativistic mechanics of continuous media. Gen. Relativ. Gravit 25, 1225–1266

  10. Ehlers J., Buchert T.: Newtonian cosmology in Lagrangian formulation: foundations and perturbation theory. Gen. Relativ. Gravit. 29, 733–764 (1997) [arXiv:astro-ph/9609036v1]

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. Ellis G.F.R.: Dynamics of pressure-free matter in general relativity. J. Math. Phys. 8, 1171–1194 (1967)

    Article  ADS  Google Scholar 

  12. Ellis G.F.R.: Relativistic cosmology: its nature, aims and problems. In: Bertotti, B., de Felice, F., Pascolini, A. (eds) General Relativity and Gravitation (Invited Papers and Discussion Reports of the 10th International Conference), pp. 215–288. Reidel, Dordrecht (1984)

    Google Scholar 

  13. Ellis, G.F.R., Buchert, T.: The universe seen at different scales. Phys. Lett. A347 (Einstein Special Issue), 38–46 (2005). [arXiv:gr-qc/0506106v2]

  14. Ellis G.F.R., van Elst H.: Cosmological models (Cargèse lectures 1998). NATO Adv. Study Inst. Ser. C. Math. Phys. Sci. 541, 1–116 (1999) [arXiv:gr-qc/9812046v5]

    Google Scholar 

  15. van Elst H., Ellis G.F.R.: Quasi-Newtonian dust cosmologies. Class. Quantum Grav. 15, 3545–3573 (1998) [arXiv:gr-qc/9805087v2]

    Article  MATH  ADS  Google Scholar 

  16. Futamase T.: An approximation scheme for constructing inhomogeneous universes in general relativity. Mon. Not. R. Astron. Soc. 237, 187–200 (1989)

    ADS  Google Scholar 

  17. Futamase T.: Averaging of a locally inhomogeneous realistic universe. Phys. Rev. D 53, 681–689 (1996)

    Article  ADS  Google Scholar 

  18. Geshnizjani, G., Brandenberger, R.H.: Back reaction and the local cosmological expansion rate. Phys. Rev. D 66, 123507 (1–6) (2002). [arXiv:gr-qc/0204074v1]

  19. Hinshaw G. et al.: Five-year Wilkinson microwave anisotropy probe observations: data processing, sky maps, and basic results. Astrophys. J. Suppl. 180, 225–245 (2009) [arXiv:0803.0732v2 [astro-ph]]

    Article  ADS  Google Scholar 

  20. Ishibashi A., Wald R.M.: Can the acceleration of our universe be explained by the effects of inhomogeneities? Class. Quantum Grav. 23, 235–250 (2006) [arXiv:gr-qc/0509108v3]

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. Kerscher M., Mecke K., Schmalzing J., Beisbart C., Buchert T., Wagner H.: Morphological fluctuations of large-scale structure: the PSCz survey. Astron. Astrophys. 373, 1–11 (2001) [arXiv:astro-ph/0101238v2]

    Article  ADS  Google Scholar 

  22. Kodama H., Sasaki M.: Cosmological perturbation theory. Prog. Theor. Phys. Suppl. 78, 1–166 (1984)

    Article  ADS  Google Scholar 

  23. Kolb, E.W., Matarrese, S., Riotto, A.: On cosmic acceleration without dark energy. New J. Phys. 8 322 (1–25) (2006). [arXiv:astro-ph/0506534v2]

  24. Kolb E.W., Marra V., Matarrese S.: Description of our cosmological spacetime as a perturbed conformal Newtonian metric and implications for the backreaction proposal for the accelerating universe. Phys. Rev. D 78, 103002 (2008) [arXiv:0807.0401v3 [astro-ph]]

    Article  ADS  Google Scholar 

  25. Mukhanov V.F., Feldman H.A., Brandenberger R.H.: Theory of cosmological perturbations. Phys. Rep. 215, 203–333 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  26. Mukhanov V.F., Abramo L.R.W., Brandenberger R.H.: Backreaction problem for cosmological perturbations. Phys. Rev. Lett. 78, 1624–1627 (1997) [arXiv:gr-qc/9609026v1]

    Article  ADS  Google Scholar 

  27. Narlikar J.V.: Newtonian universes with shear and rotation. Mon. Not. R. Astron. Soc. 126, 203–208 (1963)

    MATH  ADS  MathSciNet  Google Scholar 

  28. Parry M.: A rule of thumb for cosmological backreaction. J. Cosmol. Astropart. Phys. JCAP 06, 016 (2006) [arXiv:astro-ph/0605159v2]

    Article  ADS  Google Scholar 

  29. Räsänen S.: Accelerated expansion from structure formation. J. Cosmol. Astropart. Phys JCAP 11, 003 (2006) [arXiv:astro-ph/0607626v3]

    Article  Google Scholar 

  30. Schutz B.F.: A First Course in General Relativity, 2nd reprint. Cambridge University Press, Cambridge (1988)

    Google Scholar 

  31. Wald R.M.: General Relativity. University of Chicago Press, Chicago (1984)

    MATH  Google Scholar 

  32. White A.J., Collins C.B.: A class of shear-free perfect fluids in general relativity I. J. Math. Phys. 25, 332–337 (1984)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  33. Wiltshire D.L.: Cosmic clocks, cosmic variance and cosmic averages. New J. Phys. 9(377), 1–66 (2007) [arXiv:gr-qc/0702082v4]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henk van Elst.

Additional information

In memoriam: Jürgen Ehlers (1929–2008).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buchert, T., Ellis, G.F.R. & van Elst, H. Geometrical order-of-magnitude estimates for spatial curvature in realistic models of the Universe. Gen Relativ Gravit 41, 2017–2030 (2009). https://doi.org/10.1007/s10714-009-0828-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-009-0828-4

Keywords

Navigation