General Relativity and Gravitation

, Volume 41, Issue 5, pp 1195–1203 | Cite as

Editorial note to: J. L. Synge, On the deviation of geodesics and null geodesics, particularly in relation to the properties of spaces of constant curvature and indefinite line-element and to: F. A. E. Pirani, On the physical significance of the Riemann tensor

  • Andrzej Trautman
Golden Oldie Editorial


Geodetic deviation Riemann tensor Golden Oldie 


Editor’s note

  1. 1.
    Synge J.L.: On the deviation of geodesics and null-geodesics, particularly in relation to the properties of spaces of constant curvature and indefinite line-element. Ann. Math. 35, 705–713 (1934)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Synge J.L., Schild A.: Tensor Calculus. University of Toronto Press, Toronto (1959)Google Scholar
  3. 3.
    Schrödinger E.: Expanding Universes. Cambridge University Press, Cambridge (1956)MATHGoogle Scholar
  4. 4.
    Levi-Civita T.: Sur l’écart géodésique. Math. Ann. 97, 291–320 (1926)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Synge J.L.: The first and second variations of the length integral in Riemannian space. Proc. Lond. Math. Soc. 25, 247–264 (1926)CrossRefGoogle Scholar
  6. 6.
    Synge J.L.: On the geometry of dynamics. Phil. Trans. R. Soc. A 226, 31–106 (1927)CrossRefADSGoogle Scholar
  7. 7.
    Misner C.W., Thorne K.S., Wheeler J.A.: Gravitation. Freeman, San Francisco (1970)Google Scholar
  8. 8.
    Cartan, É.: Sur les variétés à connexion affine et la théorie de la relativité généralisée. Ann. Éc. Norm. 40, 325–412 (1923). English transl. by A Magnon and A Ashtekar, On manifolds with an affine connection and the theory of general relativity. Napoli: Bibliopolis (1986)Google Scholar
  9. 9.
    Trautman A.: Sur la théorie newtonienne de la gravitation. C. R. Acad. Sci. Paris 257, 617–620 (1963)MATHMathSciNetGoogle Scholar
  10. 10.
    Jacobi C.G.J.: Zur Theorie der Variations-Rechnung und der Differential-Gleichungen. Crelle Journal für die reine und angewandte Mathematik 17, 68–82 (1837)MATHCrossRefGoogle Scholar
  11. 11.
    Gel’fand, I.M., Fomin, S.V.: Calculus of Variations. Prentice-Hall, Englewood Cliffs (1963). Translated from the Russian edition of 1961Google Scholar
  12. 12.
    Hawking S.W., Ellis G.F.R.: The Large Scale Structure of Space–Time. Cambridge University Press, Cambridge (1973)MATHGoogle Scholar
  13. 13.
    Penrose R.: Gravitational collapse and space–time singularities. Phys. Rev. Lett. 14, 57–59 (1965)MATHCrossRefADSMathSciNetGoogle Scholar
  14. 14.
    Hawking S.W.: Singularities in the universe. Phys. Rev. Lett. 17, 444–445 (1966)CrossRefADSGoogle Scholar
  15. 15.
    Hawking S.W., Penrose R.: The singularities of gravitational collapse and cosmology. Proc. R. Soc. Lond. A 314, 529–548 (1970)MATHCrossRefADSMathSciNetGoogle Scholar
  16. 16.
    Geroch R.P.: Singularities in closed universes. Phys. Rev. Lett. 17, 445–447 (1966)MATHCrossRefADSGoogle Scholar
  17. 17.
    O’Neill B.: Semi-Riemannian Geometry with Applications to Relativity. Academic Press, New York (1983)MATHGoogle Scholar
  18. 18.
    Wald R.M.: General Relativity. University of Chicago Press, Chicago (1984)MATHGoogle Scholar
  19. 19.
    Schutz B.F.: A First Course in General Relativity. Cambridge University Press, Cambridge (1985)Google Scholar
  20. 20.
    Pirani F.A.E.: On the physical significance of the Riemann tensor. Acta Phys. Polon. 15, 389–403 (1956)MathSciNetGoogle Scholar
  21. 21.
    Sachs R.: Gravitational waves in general relativity VI. The outgoing radiation condition. Proc. R. Soc. Lond. A 264, 309–338 (1961)MATHCrossRefADSMathSciNetGoogle Scholar
  22. 22.
    Newman E.T., Penrose R.: An approach to gravitational radiation by a method of spin coefficients. J. Math. Phys. 3, 566–578 (1962)CrossRefADSMathSciNetGoogle Scholar
  23. 23.
    Fermi, E.: Sopra i fenomeni che avvengono in vicinanza di una linea oraria. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. & Nat. 31 1, 21–23, 51–52 (1922)Google Scholar
  24. 24.
    Walker A.G.: Relative co-ordinates. Proc. R. Soc. Edinb. 52, 345–353 (1932)MATHGoogle Scholar
  25. 25.
    Frenkel J.: Die Elektrodynamik des rotierenden Elektrons. Z. Physik 37, 243–262 (1926)CrossRefADSGoogle Scholar
  26. 26.
    Thomas L.H.: The motion of the spinning electron. Nature 117, 514 (1926)CrossRefADSGoogle Scholar
  27. 27.
    Mathisson, M.: 1937 Neue Mechanik materieller Systeme. Acta Phys. Polon. 6, 163–200 (1937), to be reprinted as a Golden OldieGoogle Scholar

Comments to Pirani’s biography

  1. 28.
    Pirani F.A.E., Schild A.: On the quantization of Einstein’s gravitational field equations. Phys. Rev. 79, 986–991 (1950)MATHCrossRefADSMathSciNetGoogle Scholar
  2. 29.
    Synge J.L.: Relativity: The General Theory. North-Holland, Amsterdam (1960)MATHGoogle Scholar
  3. 30.
    Synge J.L.: Relativity: The Special Theory. North-Holland, Amsterdam (1955)Google Scholar
  4. 31.
    Pirani F.A.E.: Invariant formulation of gravitational radiation theory. Phys. Rev. 105, 1089–1099 (1957)MATHCrossRefADSMathSciNetGoogle Scholar
  5. 32.
    Trautman, A.: Lectures on general relativity. King’s College (1958). Published as a “Golden Oldie”. GRG J. 34:721–762 (2002)Google Scholar
  6. 33.
    Bondi H., Pirani F.A.E., Robinson I.: Gravitational waves in general relativity III. Exact plane waves. Proc. R. Soc. Lond. A 251, 519–533 (1959)MATHCrossRefADSMathSciNetGoogle Scholar
  7. 34.
    Kennefick D.: Einstein versus the Physical Review. Phys. Today 58(9), 43 (2005)CrossRefGoogle Scholar
  8. 35.
    Pirani F.A.E.: Gravitational radiation. In: Witten, L. (eds) Gravitation: An Introduction to Current Research, chap. 6., pp. 199–226. Wiley, New York (1962)Google Scholar
  9. 36.
    Bondi H., Pirani F.A.E., Trautman A.: Lectures on General Relativity. Prentice-Hall, Englewood Cliffs (1964)Google Scholar
  10. 37.
    O’Raifeartaigh, L. (eds): General Relativity (papers in honour of J. L. Synge). Clarendon Press, Oxford (1972)MATHGoogle Scholar
  11. 38.
    Pirani F.A.E., Schild A.: Geometrical and physical interpretation of the Weyl conformal curvature tensor. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 9, 543–547 (1961)MATHMathSciNetGoogle Scholar
  12. 39.
    Pirani F.A.E.: A note on bouncing photons. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 13, 239–242 (1965)MathSciNetGoogle Scholar
  13. 40.
    Pirani, F.A.E., Schild, A.: Conformal geometry and the interpretation of the Weyl tensor. In: Perspectives in Geometry (Essays in honor of V. Hlavatý), pp. 291–309. Indiana University Press, Bloomington (1966)Google Scholar
  14. 41.
    Crampin, M., Pirani, F.A.E.: Applicable Differential Geometry. London Mathematical Society Lecture Note Series, vol. 59. Cambridge University Press, Cambridge (1986)Google Scholar
  15. 42.
    Crampin M., Pirani F.A.E., Robinson D.C.: The soliton connection. Lett. Math. Phys. 2, 15–19 (1977/1978)CrossRefADSMathSciNetGoogle Scholar
  16. 43.
    Pirani, F.A.E.: Local Jet Bundle Formulation of Bäcklund Transformations, with Applications to Non-Linear Evolution. Reidel, Dordrecht (1979)Google Scholar
  17. 44.
    Pirani, F.A.E.: Geometry of Bäcklund transformations. In: Nonlinear Evolution Equations and Dynamical Systems (Proc. Meeting, Univ. Lecce, Lecce, 1979), Lecture Notes in Physics, vol. 120, pp. 212–217, Springer, Berlin (1980)Google Scholar
  18. 45.
    Russell B.: The ABC of Relativity, Fifth revised edition, edited by F. Pirani. Routledge, London (2002)Google Scholar
  19. 46.
    Pirani F., Roche C.: Introducing the Universe, revised edition. Icon Books, Cambridge (2006)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Instytut Fizyki TeoretycznejUniwersytet WarszawskiWarsawPoland

Personalised recommendations