General Relativity and Gravitation

, Volume 41, Issue 4, pp 919–981 | Cite as

The ultra-violet question in maximally supersymmetric field theories

  • G. Bossard
  • P. S. Howe
  • K. S. Stelle
Open Access
Review Article


We discuss various approaches to the problem of determining which supersymmetric invariants are permitted as counterterms in maximally supersymmetric super Yang–Mills and supergravity theories in various dimensions. We review the superspace non-renormalisation theorems based on conventional, light-cone, harmonic and certain non-Lorentz covariant superspaces, and we write down explicitly the relevant invariants. While the first two types of superspace admit the possibility of one-half BPS counterterms, of the form F 4 and R 4 respectively, the last two do not. This suggests that UV divergences begin with one-quarter BPS counterterms, i.e. d 2 F 4 and d 4 R 4, and this is supported by an entirely different approach based on algebraic renormalisation. The algebraic formalism is discussed for non-renormalisable theories and it is shown how the allowable supersymmetric counterterms can be determined via cohomological methods. These results are in agreement with all the explicit computations that have been carried out to date. In particular, they suggest that maximal supergravity is likely to diverge at four loops in D = 5 and at five loops in D = 4, unless other infinity suppression mechanisms not involving supersymmetry or gauge invariance are at work.


Supersymmetry Divergences Non-renormalisation 


  1. 1.
    ’t Hooft G., Veltman M.J.G.: One loop divergencies in the theory of gravitation. Ann. Inst. H. Poincare Phys. Theor. A 20, 69 (1974)ADSMathSciNetGoogle Scholar
  2. 2.
    Freedman D.Z., van Nieuwenhuizen P., Ferrara S.: Progress toward a theory of supergravity. Phys. Rev. D 13, 3214 (1976)CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Deser S., Zumino B.: Consistent supergravity. Phys. Lett. B 62, 335 (1976)CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    Grisaru M.T.: Two loop renormalizability of supergravity. Phys. Lett. B 66, 75 (1977)CrossRefGoogle Scholar
  5. 5.
    Cremmer E., Julia B.: The SO(8) supergravity. Nucl. Phys. B 159, 141 (1979)CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    Deser S., Kay J.H., Stelle K.S.: Renormalizability properties of supergravity. Phys. Rev. Lett. 38, 527 (1977)CrossRefADSGoogle Scholar
  7. 7.
    Deser S., Kay J.H.: Three loop counterterms for extended supergravity. Phys. Lett. B 76, 400 (1978)CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    Brink L., Howe P.S.: The \({\mathcal {N}=8}\) supergravity in superspace. Phys. Lett. B 88, 268 (1979)CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    Howe P.S., Lindstrom U.: Higher order invariants in extended supergravity. Nucl. Phys. B 181, 487 (1981)CrossRefADSGoogle Scholar
  10. 10.
    Kallosh R.E.: Counterterms in extended supergravities. Phys. Lett. B 99, 122 (1981)CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    Howe P.S., Stelle K.S., Townsend P.K.: Superactions. Nucl. Phys. B 191, 445 (1981)CrossRefADSGoogle Scholar
  12. 12.
    Howe P.S., Stelle K.S., Townsend P.K.: The relaxed hypermultiplet: an unconstrained \({\mathcal {N}=2}\) superfield theory. Nucl. Phys. B 214, 519 (1983)CrossRefADSGoogle Scholar
  13. 13.
    Mandelstam S.: Light cone superspace and the ultraviolet finiteness of the \({\mathcal {N}=4}\) model. Nucl. Phys. B 213, 149 (1983)CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    Brink L., Lindgren O., Nilsson B.E.W.: The ultraviolet finiteness of the \({\mathcal {N}=4}\) Yang–Mills theory. Phys. Lett. B 123, 323 (1983)CrossRefADSGoogle Scholar
  15. 15.
    Bern Z., Carrasco J.J., Dixon L.J., Johansson H., Kosower D.A., Roiban R.: Three-loop superfiniteness of \({\mathcal {N}=8}\) supergravity. Phys. Rev. Lett. 98, 161303 (2007) [hep-th/0702112]CrossRefADSGoogle Scholar
  16. 16.
    Bern Z., Dixon L.J., Dunbar D.C., Perelstein M., Rozowsky J.S.: On the relationship between Yang–Mills theory and gravity and its implication for ultraviolet divergences. Nucl. Phys. B 530, 401 (1998) [hep-th/9802162]CrossRefGoogle Scholar
  17. 17.
    Drummond J.M., Heslop P.J., Howe P.S., Kerstan S.F.: Integral invariants in \({\mathcal {N}=4}\) SYM and the effective action for coincident D-branes. JHEP 0308, 016 (2003) [hep-th/0305202]CrossRefADSMathSciNetGoogle Scholar
  18. 18.
    Bern, Z., Carrasco, J.J.M., Dixon, L.J., Johansson, H., Roiban, R.: Manifest ultraviolet behaviour for the three-loop four-point amplitude of \({\mathcal {N}=8}\) supergravity. 0808.4112 [hep-th]Google Scholar
  19. 19.
    Berkovits N.: New higher-derivative R 4 theorems. Phys. Rev. Lett. 98, 211601 (2007) [hep-th/0609006]CrossRefADSMathSciNetGoogle Scholar
  20. 20.
    Green M.B., Russo J.G., Vanhove P.: Ultraviolet properties of maximal supergravity. Phys. Rev. Lett. 98, 131602 (2007) [hep-th/0611273]CrossRefADSGoogle Scholar
  21. 21.
    Green M.B., Russo J.G., Vanhove P.: Non-renormalisation conditions in type II string theory and maximal supergravity. JHEP 0702, 099 (2007) [arXiv:hep-th/0610299]CrossRefADSMathSciNetGoogle Scholar
  22. 22.
    Green M.B., Ooguri H., Schwarz J.H.: Decoupling supergravity from the superstring. Phys. Rev. Lett. 99, 041601 (2007) 0704.0777 [hep-th]CrossRefADSMathSciNetGoogle Scholar
  23. 23.
    Howe P.S., Stelle K.S., Townsend P.K.: Miraculous ultraviolet cancellations in supersymmetry made manifest. Nucl. Phys. B 236, 125 (1984)CrossRefADSMathSciNetGoogle Scholar
  24. 24.
    Howe P.S., Stelle K.S.: Ultraviolet divergences in higher dimensional supersymmetric Yang–Mills Theories. Phys. Lett. B 137, 175 (1984)CrossRefADSGoogle Scholar
  25. 25.
    Galperin A., Ivanov E., Kalitsyn S., Ogievetsky V., Sokatchev E.: Unconstrained \({\mathcal {N}=2}\) matter, Yang–Mills and supergravity theories in harmonic superspace. Class. Quant. Gravit. 1, 469 (1984)CrossRefADSGoogle Scholar
  26. 26.
    Galperin A., Ivanov E., Ogievetsky V., Sokatchev E.: Harmonic supergraphs. Feynman rules and examples. Class. Quant. Gravit. 2, 617 (1985)MATHCrossRefADSMathSciNetGoogle Scholar
  27. 27.
    Howe P.S., , : Supersymmetry counterterms revisited. Phys. Lett. B 554, 190 (2003) [hep-th/0211279]MATHCrossRefADSMathSciNetGoogle Scholar
  28. 28.
    Galperin A., Ivanov E., Kalitsyn S., Ogievetsky V., Sokatchev E.: \({\mathcal {N}=3}\) supersymmetric gauge theory. Phys. Lett. B 151, 215 (1985)CrossRefADSMathSciNetGoogle Scholar
  29. 29.
    Delduc F., McCabe J.: The quantisation of \({\mathcal {N}=3}\) super-Yang–Mills off-shell in harmonic superspace. Class. Quant. Gravit. 6, 233 (1989)MATHCrossRefADSMathSciNetGoogle Scholar
  30. 30.
    Stelle K.S.: Finite after all. Nature Phys. 3, 448 (2007)CrossRefADSGoogle Scholar
  31. 31.
    Grisaru M.T., Siegel W., Rocek M.: Improved methods for supergraphs. Nucl. Phys. B 159, 429 (1979)CrossRefADSMathSciNetGoogle Scholar
  32. 32.
    Grisaru M.T., Siegel W.: Supergraphity. 2. Manifestly covariant rules and higher loop finiteness. Nucl. Phys. B 201, 292 (1982)CrossRefADSGoogle Scholar
  33. 33.
    Howe P.S., Stelle K.S., West P.C.: A class of finite four-dimensional supersymmetric field theories. Phys. Lett. B 124, 55 (1983)CrossRefADSGoogle Scholar
  34. 34.
    Mezincescu, L.: On the superfield formulation of O(2) supersymmetry, preprint (Russian) JINR-P2-12572 (1979)Google Scholar
  35. 35.
    Buchbinder I.L., Kuzenko S.M., Ovrut B.A.: On the D = 4, N = 2 non-renormalization theorem. Phys. Lett. B 433, 335 (1998) [arXiv:hep-th/9710142]CrossRefMathSciNetGoogle Scholar
  36. 36.
    Buchbinder I.L., Buchbinder E.I., Kuzenko S.M., Ovrut B.A.: The background field method for N = 2 super Yang–Mills theories in harmonic superspace. Phys. Lett. B 417, 61 (1998) [arXiv:hep-th/9704214]CrossRefMathSciNetGoogle Scholar
  37. 37.
    Siegel W., Rocek M.: On off-shell supermultiplets. Phys. Lett. B 105, 275 (1981)CrossRefADSGoogle Scholar
  38. 38.
    Rivelles V.O., Taylor J.G.: Off-shell no go theorems for higher dimensional supersymmetries and supergravities. Phys. Lett. B 121, 37 (1983)CrossRefADSGoogle Scholar
  39. 39.
    Howe P.S., Nicolai H., Van Proeyen A.: Auxiliary fields and a superspace lagrangian for linearized ten-dimensional supergravity. Phys. Lett. B 112, 446 (1982)CrossRefADSGoogle Scholar
  40. 40.
    Marcus N., Sagnotti A.: The ultraviolet behavior of \({\mathcal {N} =4}\) Yang-Mills and the power counting of extended superspace. Nucl. Phys. B 256, 77 (1985)CrossRefADSGoogle Scholar
  41. 41.
    White P.L.: Analysis of the superconformal cohomology structure of \({\mathcal {N}=4}\) super Yang–Mills. Class. Quant. Gravit. 9, 413 (1992)MATHCrossRefADSGoogle Scholar
  42. 42.
    Blasi A., Lemes V.E.R., Maggiore N., Sorella S.P., Tanzini A., Ventura O.S., Vilar L.C.Q.: Perturbative beta function of \({\mathcal{N} = 2}\) super-Yang–Mills theories. JHEP 0005, 039 (2000) [hep-th/0004048]CrossRefADSMathSciNetGoogle Scholar
  43. 43.
    Lemes, V.E.R., Sarandy, M.S., Sorella, S.P., Ventura, O.S., Vilar, L.C.Q.: An algebraic criterion for the ultraviolet finiteness of quantum field theories. J. Phys. A 34 (2001) 9485 [hep-th/0103110]Google Scholar
  44. 44.
    Baulieu L., Bossard G., Sorella S.P.: Finiteness properties of the \({\mathcal {N} = 4}\) super-Yang–Mills theory in supersymmetric gauge. Nucl. Phys. B 753, 252 (2006) [hep-th/0605164]MATHCrossRefADSMathSciNetGoogle Scholar
  45. 45.
    Baulieu L., Bossard G.: Superconformal invariance from \({\mathcal {N}=2}\) supersymmetry Ward identities. JHEP 0802, 075 (2008) 0711.3776 [hep-th]CrossRefADSMathSciNetGoogle Scholar
  46. 46.
    Rosly, A.A.: Super Yang–Mills constraints as integrability conditions. In: Markov, M.A. (ed.) Proceedings of the International Seminar on Group Theoretical Methods in Physics, vol. 1, p. 263. (Zvenigorod, USSR, 1982), Nauka, Moscow (1983) (in Russian) [English translation: In: Markov, M.A., Man’ko, V.I., Shabad, A.E. (eds.) Group Theoretical Methods in Physics, vol. 3, p. 587. Harwood Academic Publishers, London (1987)]Google Scholar
  47. 47.
    Karlhede A., Lindstrom U., Rocek M.: Selfinteracting tensor multiplets In \({\mathcal {N}=2}\) superspace. Phys. Lett. B 147, 297 (1984)CrossRefADSMathSciNetGoogle Scholar
  48. 48.
    Hartwell G.G., Howe P.S.: (N, P, Q) harmonic superspace. Int. J. Mod. Phys. A 10, 3901 (1995) [hep-th/9412147]MATHCrossRefADSMathSciNetGoogle Scholar
  49. 49.
    Howe P.S., Hartwell G.G.: A superspace survey. Class. Quant. Gravit. 12, 1823 (1995)MATHCrossRefADSMathSciNetGoogle Scholar
  50. 50.
    Eden B., Petkou A.C., Schubert C., Sokatchev E.: Partial non-renormalisation of the stress-tensor four-point function in \({\mathcal {N}=4}\) SYM and AdS/CFT. Nucl. Phys. B 607, 191 (2001) [hep-th/0009106]MATHCrossRefADSMathSciNetGoogle Scholar
  51. 51.
    Heslop P.J., Howe P.S.: A note on composite operators in \({\mathcal {N}=4}\) SYM. Phys. Lett. B 516, 367 (2001) [hep-th/0106238]MATHCrossRefADSMathSciNetGoogle Scholar
  52. 52.
    Howe P.S., Stelle K.S., West P.C.: \({\mathcal {N}=1 D=6}\) harmonic superspace. Class. Quant. Gravit. 2, 815 (1985)MATHCrossRefADSMathSciNetGoogle Scholar
  53. 53.
    Howe, P.S.: On harmonic superspace [hep-th/9812133]Google Scholar
  54. 54.
    Ferrara S., Sokatchev E.: Representations of (1, 0) and (2, 0) superconformal algebras in six dimensions: Massless and short superfields. Lett. Math. Phys. 51, 55 (2000) [hep-th/0001178]MATHCrossRefMathSciNetGoogle Scholar
  55. 55.
    Kuzenko S.M., Linch W.D.I.: On five-dimensional superspaces. JHEP 0602, 038 (2006) [hep-th/0507176]CrossRefADSMathSciNetGoogle Scholar
  56. 56.
    Brink L., Lindgren O., Nilsson B.E.W.: \({\mathcal {N}=4}\) Yang–Mills theory on the light cone. Nucl. Phys. B 212, 401 (1983)CrossRefADSGoogle Scholar
  57. 57.
    Kallosh, R.: On a possibility of a UV finite \({\mathcal {N}=8}\) supergravity. 0808.2310 [hep-th]Google Scholar
  58. 58.
    Brink L., Kim S.S., Ramond P.: E 7(7) on the light cone. JHEP 0806, 034 (2008) 0801.2993 [hep-th]CrossRefADSMathSciNetGoogle Scholar
  59. 59.
    Roslyi A.A., Schwarz A.S.: Supersymmetry in a space with auxiliary dimensions. Commun. Math. Phys. 105, 645 (1986)CrossRefADSMathSciNetGoogle Scholar
  60. 60.
    Baulieu L., Berkovits N.J., Bossard G., Martin A.: Ten-dimensional super-Yang–Mills with nine off-shell supersymmetries. Phys. Lett. B 658, 249 (2008) 0705.2002 [hep-th]CrossRefADSMathSciNetGoogle Scholar
  61. 61.
    Berkovits N.: A ten-dimensional super Yang–Mills action with off-shell supersymmetry. Phys. Lett. B 318, 104 (1993) [hep-th/9308128]CrossRefADSMathSciNetGoogle Scholar
  62. 62.
    Baulieu L., Kanno H., Singer I.M.: Special quantum field theories in eight and other dimensions. Commun. Math. Phys. 194, 149 (1998) [hep-th/9704167]MATHCrossRefADSMathSciNetGoogle Scholar
  63. 63.
    Baulieu L., Bossard G., Tanzini A.: Topological vector symmetry of BRSTQFT and construction of maximal supersymmetry. JHEP 0508, 037 (2005) [hep-th/0504224]CrossRefADSMathSciNetGoogle Scholar
  64. 64.
    Gates S.J.J.: Ectoplasm has no topology. Nucl. Phys. B 541, 615 (1999) [hep-th/9809056]MATHCrossRefADSMathSciNetGoogle Scholar
  65. 65.
    Berkovits, N., Howe, P.S.: The cohomology of superspace, pure spinors and invariant integrals. 0803.3024 [hep-th]Google Scholar
  66. 66.
    Howe P.S., Lindstrom U., White P.: Anomalies and renormalisation in the BRST-BV framework. Phys. Lett. B 246, 430 (1990)CrossRefADSMathSciNetGoogle Scholar
  67. 67.
    Dixon J.A.: Supersymmetry is full of holes. Class. Quant. Gravit. 7, 1511 (1990)CrossRefADSMathSciNetGoogle Scholar
  68. 68.
    White P.L.: An analysis of the cohomology structure of superYang–Mills coupled to matter. Class. Quant. Gravit. 9, 1663 (1992)MATHCrossRefADSGoogle Scholar
  69. 69.
    Baulieu L., Bossard G., Sorella S.P.: Shadow fields and local supersymmetric gauges. Nucl. Phys. B 753, 273 (2006) [hep-th/0603248]MATHCrossRefADSMathSciNetGoogle Scholar
  70. 70.
    Piguet O., Sorella S.P.: Algebraic renormalization: perturbative renormalization, symmetries and anomalies. Lect. Notes Phys. M28, 1 (1995)MathSciNetGoogle Scholar
  71. 71.
    Henneaux M., Teitelboim C.: Quantisation of Gauge Systems. Princeton University Press, Princeton (1992)Google Scholar
  72. 72.
    Breitenlohner P., Maison D., Stelle K.S.: Anomalous dimensions and the Adler–Bardeen theorem in supersymmetric Yang–Mills theories. Phys. Lett. B 134, 63 (1984)CrossRefADSMathSciNetGoogle Scholar
  73. 73.
    Baulieu L., Thierry-Mieg J.: Algebraic structure of quantum gravity and the classification of the gravitational anomalies. Phys. Lett. B 145, 53 (1984)CrossRefADSMathSciNetGoogle Scholar
  74. 74.
    Baulieu L., Bellon M.: A simple algebraic construction of the symmetries of supergravity. Phys. Lett. B 161, 96 (1985)CrossRefADSMathSciNetGoogle Scholar
  75. 75.
    Green M.B., Gutperle M.: Effects of D-instantons. Nucl. Phys. B 498, 195 (1997) [arXiv:hep-th/9701093]MATHCrossRefMathSciNetGoogle Scholar
  76. 76.
    Berkovits N.: Construction of R**4 terms in N = 2 D = 8 superspace. Nucl. Phys. B 514, 191 (1998) [arXiv:hep-th/9709116]MATHCrossRefMathSciNetGoogle Scholar
  77. 77.
    Green M.B., Sethi S.: Supersymmetry constraints on type IIB supergravity. Phys. Rev. D 59, 046006 (1999) [arXiv:hep-th/9808061]CrossRefADSMathSciNetGoogle Scholar
  78. 78.
    Stelle, K.S.: Ultraviolet properties of extended supersymmetric Yang–Mills theories. In: Karpacz, Proceedings, Supersymmetry and Supergravity, pp. 319–340 (1983)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.AEIMax Planck Institut für GravitationsphysikPotsdamGermany
  2. 2.Department of Mathematics, King’s CollegeUniversity of LondonLondonUK
  3. 3.Theoretical Physics GroupImperial College LondonLondonUK

Personalised recommendations