General Relativity and Gravitation

, Volume 41, Issue 8, pp 1795–1818 | Cite as

Profiles of emission lines generated by rings orbiting braneworld Kerr black holes

  • Jan Schee
  • Zdeněk Stuchlík


In the framework of the braneworld models, rotating black holes can be described by the Kerr metric with a tidal charge representing the influence of the non-local gravitational (tidal) effects of the bulk space Weyl tensor onto the black hole spacetime. We study the influence of the tidal charge onto profiled spectral lines generated by radiating tori orbiting in vicinity of a rotating black hole. We show that with lowering the negative tidal charge of the black hole, the profiled line becomes to be flatter and wider keeping their standard character with flux stronger at the blue edge of the profiled line. The extension of the line grows with radius falling and inclination angle growing. With growing inclination angle a small hump appears in the profiled lines due to the strong lensing effect of photons coming from regions behind the black hole. For positive tidal charge (b > 0) and high inclination angles two small humps appear in the profiled lines close to the red and blue edge of the lines due to the strong lensing effect. We can conclude that for all values of b, the strongest effect on the profiled lines shape (extension) is caused by the changes of the inclination angle.


Black hole Emission line Braneworld model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aliev A.N., Gümrükçüoğlu A.E.: Charged rotating black holes on a 3-brane. Phys. Rev. 71(10), 104027 (2005)MathSciNetGoogle Scholar
  2. 2.
    Arkani-Hamed N., Dimopoulos S., Dvali G.: The hierarchy problem and new dimensions at a millimeter 429, 263–272 (1998)Google Scholar
  3. 3.
    Aschenbach B.: Measuring mass and angular momentum of black holes with high-frequency quasi-periodic oscillations. Astron. Astrophys. 425, 1075–1082 (2004)CrossRefADSGoogle Scholar
  4. 4.
    Aschenbach, B.: Measurement of mass and spin of black holes with qpos. ARXIV (2007)Google Scholar
  5. 5.
    Bao G., Stuchlík Z.: Accretion disk self-eclipse: x-ray light curve and emmision line. Astrophys. J. 400, 163–169 (1992)CrossRefADSGoogle Scholar
  6. 6.
    Bardeen, J.M.: Timelike and null geodesics in the Kerr metric. In: Black Holes (Les Astres Occlus), pp. 215–239 (1973)Google Scholar
  7. 7.
    Bicak J., Stuchlik Z.: On the latitudinal and radial motion in the field of a rotating black hole. Bull. Astron. Inst. Czech. 27, 129–133 (1976)ADSGoogle Scholar
  8. 8.
    Carter B.: Global structure of the kerr family of gravitational fields. Phys. Rev. 174, 1559 (1968)MATHCrossRefADSGoogle Scholar
  9. 9.
    Chandrasekhar S.: The Mathematical Theory of Black Holes. Clarendon Press Oxford, Oxford University Press, New York (1983)MATHGoogle Scholar
  10. 10.
    Cunningham C.T., Bardeen J.M.: The optical appearance of a star orbiting an extreme kerr black hole. Astrophys. J. 183, 237–264 (1973)CrossRefADSGoogle Scholar
  11. 11.
    Czerny, B., Moscibrodzka, M., Proga, D., Das, T., Siemiginowska, A.: Low angular momentum accretion flow model of Sgr A* activity. ArXiv e-prints. 710, October (2007)Google Scholar
  12. 12.
    Dadhich N., Maartens R., Papadopoulos P., Rezania V.: Black holes on the brane 487, 1 (2000)MATHMathSciNetGoogle Scholar
  13. 13.
    Dotani, T.: ASCA and RXTE observations of the accretion disk in the X-ray binaries. In: Current High-energy Emission Around Black Holes. Proceedings of the 2nd KIAS Astrophysics Workshop. Korea Institute for Advanced Study, September 3–8, 2001 (2002)Google Scholar
  14. 14.
    Fanton C., Calvani M., de Felice F., Čadež A.: Detecting accretion disks in active galactic nuclei. Publ. Astron. Soc. Jpn. (49), 159–169(1997)Google Scholar
  15. 15.
    Germani C., Maartens R.: Stars in the braneworld. Phys. Rev. 64, 124010 (2001)MathSciNetADSGoogle Scholar
  16. 16.
    Ghez A.M., Salim S., Hornstein S.D., Tanner A., Lu J.R., Morris M., Becklin E.E., Duchêne G.: Stellar orbits around the galactic center black hole. Astrophys. J. 620, 744–757 (2005)CrossRefADSGoogle Scholar
  17. 17.
    Joshi Y.C.: Displacement of the sun from the galactic plane. Mon. Not. R. Astron. Soc. 378, 768–776 (2007)CrossRefADSGoogle Scholar
  18. 18.
    Laor A.: Line profiles from a disk around a rotating black hole. Astrophys. J. 376, 90–94 (1991)CrossRefADSGoogle Scholar
  19. 19.
    Maartens R.: Brane-world gravity. Living Rev. Rel. 7, 7 (2004)Google Scholar
  20. 20.
    Matt G., Fabian A.C., Ross R.R.: Iron k-alpha lines from x-ray photoionized accretion discs. MNRAS 262(1), 179–186 (1993)ADSGoogle Scholar
  21. 21.
    McClintock J.E., Narayan R., Shafee R.: Estimating the spins of stellar-mass black holes. ArXiv e-prints 707 (2007). In: Livio M., Koekemoer A. (eds.) Cambridge University Press, London (2008)Google Scholar
  22. 22.
    McClintock, J.E., Narayan, R., Shafee, R.: In: Livio, M., Koekemoer, A. (eds.) Black Holes. Cambridge University Press, London (2008, in press)Google Scholar
  23. 23.
    Middleton M., Done C., Gierlinski M., Davis S.W.: Black hole spin in grs 1915+105. Mon. Not. R. Astron. Soc. 373, 1004–1012 (2006)CrossRefADSGoogle Scholar
  24. 24.
    Misner C.W., Thorne K.S., Wheeler J.A.: Gravitation. W.H. Freeman and Company, San Francisco (1973)Google Scholar
  25. 25.
    Randall, L., Sundrum, R.: An alternative to compactification. 83(23), 4690–4693 (1999)Google Scholar
  26. 26.
    Rauch K.P., Blandford R.D.: Optical caustics in a kerr spacetime and the origin of rapid x-ray variability in active galactic nuclei. Astrophys. J. 421, 46–68 (1994)CrossRefADSGoogle Scholar
  27. 27.
    Remillard, R.A.: X-ray spectral states and high-frequency qpos in black hole binaries. Astro. Nach. 326(9) (2005)Google Scholar
  28. 28.
    Remillard R.A., McClintock J.E.: X-ray properties of black-hole binaries. Ann. Rev. Astron. Astrophys. 44(1), 49–92 (2006)CrossRefADSGoogle Scholar
  29. 29.
    Sasaki M., Shiromizu T., Maeda K.-I.: Gravity, stability, and energy conservation on the Randall-Sundrum brane world. Phys. Rev. D 62(2), 024008 (2000)CrossRefMathSciNetADSGoogle Scholar
  30. 30.
    Schee, J., Stuchlík, Z.: Optical effects in brany kerr spacetimes. In: Proceedings of RAGtime 8/9: Workshops on black holes and neutron stars, Opava, 15–19/19–21 September 2006/2007 (2007)Google Scholar
  31. 31.
    Schee, J., Stuchlík, Z.: Spectral line profile in brany kerr spacetime. In: Proceedings of RAGtime 8/9: Workshops on black holes and neutron stars, Opava, 15–19/19–21 September 2006/2007 (2007)Google Scholar
  32. 32.
    Schee, J., Stuchlík, Z., Juráň, J.: Light escape cones and raytracing in Kerr geometry. In: Proceedings of RAGtime 6/7: Workshops on black holes and neutron stars, Opava, 16–18/18–20 September 2004/2005 (2005)Google Scholar
  33. 33.
    Shiromizu T., Maeda K., Sasaki M.: The Einstein equations on the 3-brane world. Phys. Rev. 62, 024012 (2000)MathSciNetADSGoogle Scholar
  34. 34.
    Strohmayer, T.: Understanding the nature of high inclination low mass X-ray binaries: broad-band and line spectra from A1744-361. In: Chandra Proposal, p. 2377 (2007)Google Scholar
  35. 35.
    Stuchlík, Z.: Null geodesics in the Kerr–Newman metric. Bull. Astron. Inst. Czech. 32(6) (1981)Google Scholar
  36. 36.
    Stuchlík Z., Bao G.: Radiation from hot spots orbiting an extreme Reissner–Nordström black hole. Gen. Relativ. Gravit. 24(9), 945–957 (1992)CrossRefADSGoogle Scholar
  37. 37.
    Stuchlík, Z., Kotrlová, A.: Orbital resonance model of qpos in braneworld Kerr black hole spacetimes. In: Proceedings of RAGtime 8/9: Workshops on black holes and neutron stars, Opava, 15–19/19–21 September 2006/2007 (2007)Google Scholar
  38. 38.
    Török, G.: A possible 3:2 orbital epicyclic resonance in QPO frequencies of Sgr A*. Astron. Astrophys. 1(440), 1–4 (2005a)Google Scholar
  39. 39.
    Török G.: QPOs in microquasars and Sgr A* measuring the black hole spin. Astron. Nachr. 856(326), 856–860 (2005b)CrossRefADSGoogle Scholar
  40. 40.
    Török, G., Abramowicz, M., Kluźniak, W., Stuchlík, Z.: The orbital resonance model for twin peak kHz quasi periodic oscillations in microquasars. Astron. Astrophys. 1(436) (2005)Google Scholar
  41. 41.
    Viergutz S.U.: Image generation in Kerr geometry. I. Analytical investigations on the stationary emitter-observer problem. Astron. Astrophys. 272, 355–377 (1993)MathSciNetADSGoogle Scholar
  42. 42.
    Zakharov A.F.: The iron k α-line as a tool for analysis of black hole characteristics. Publ. Astron. Observ. Belgrade 76, 147–162 (2003)ADSGoogle Scholar
  43. 43.
    Zakharov A.F., Repin S.V.: Different types of fe k α lines from radiating annuli near black holes. New Astron. 11, 405–410 (2006)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Faculty of Philosophy and Science, Institute of PhysicsSilesian University in OpavaOpavaCzech Republic

Personalised recommendations