Skip to main content
Log in

Profiles of emission lines generated by rings orbiting braneworld Kerr black holes

  • RESEARCH ARTICLE
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

In the framework of the braneworld models, rotating black holes can be described by the Kerr metric with a tidal charge representing the influence of the non-local gravitational (tidal) effects of the bulk space Weyl tensor onto the black hole spacetime. We study the influence of the tidal charge onto profiled spectral lines generated by radiating tori orbiting in vicinity of a rotating black hole. We show that with lowering the negative tidal charge of the black hole, the profiled line becomes to be flatter and wider keeping their standard character with flux stronger at the blue edge of the profiled line. The extension of the line grows with radius falling and inclination angle growing. With growing inclination angle a small hump appears in the profiled lines due to the strong lensing effect of photons coming from regions behind the black hole. For positive tidal charge (b > 0) and high inclination angles two small humps appear in the profiled lines close to the red and blue edge of the lines due to the strong lensing effect. We can conclude that for all values of b, the strongest effect on the profiled lines shape (extension) is caused by the changes of the inclination angle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aliev A.N., Gümrükçüoğlu A.E.: Charged rotating black holes on a 3-brane. Phys. Rev. 71(10), 104027 (2005)

    MathSciNet  Google Scholar 

  2. Arkani-Hamed N., Dimopoulos S., Dvali G.: The hierarchy problem and new dimensions at a millimeter 429, 263–272 (1998)

    Google Scholar 

  3. Aschenbach B.: Measuring mass and angular momentum of black holes with high-frequency quasi-periodic oscillations. Astron. Astrophys. 425, 1075–1082 (2004)

    Article  ADS  Google Scholar 

  4. Aschenbach, B.: Measurement of mass and spin of black holes with qpos. ARXIV (2007)

  5. Bao G., Stuchlík Z.: Accretion disk self-eclipse: x-ray light curve and emmision line. Astrophys. J. 400, 163–169 (1992)

    Article  ADS  Google Scholar 

  6. Bardeen, J.M.: Timelike and null geodesics in the Kerr metric. In: Black Holes (Les Astres Occlus), pp. 215–239 (1973)

  7. Bicak J., Stuchlik Z.: On the latitudinal and radial motion in the field of a rotating black hole. Bull. Astron. Inst. Czech. 27, 129–133 (1976)

    ADS  Google Scholar 

  8. Carter B.: Global structure of the kerr family of gravitational fields. Phys. Rev. 174, 1559 (1968)

    Article  MATH  ADS  Google Scholar 

  9. Chandrasekhar S.: The Mathematical Theory of Black Holes. Clarendon Press Oxford, Oxford University Press, New York (1983)

    MATH  Google Scholar 

  10. Cunningham C.T., Bardeen J.M.: The optical appearance of a star orbiting an extreme kerr black hole. Astrophys. J. 183, 237–264 (1973)

    Article  ADS  Google Scholar 

  11. Czerny, B., Moscibrodzka, M., Proga, D., Das, T., Siemiginowska, A.: Low angular momentum accretion flow model of Sgr A* activity. ArXiv e-prints. 710, October (2007)

  12. Dadhich N., Maartens R., Papadopoulos P., Rezania V.: Black holes on the brane 487, 1 (2000)

    MATH  MathSciNet  Google Scholar 

  13. Dotani, T.: ASCA and RXTE observations of the accretion disk in the X-ray binaries. In: Current High-energy Emission Around Black Holes. Proceedings of the 2nd KIAS Astrophysics Workshop. Korea Institute for Advanced Study, September 3–8, 2001 (2002)

  14. Fanton C., Calvani M., de Felice F., Čadež A.: Detecting accretion disks in active galactic nuclei. Publ. Astron. Soc. Jpn. (49), 159–169(1997)

    Google Scholar 

  15. Germani C., Maartens R.: Stars in the braneworld. Phys. Rev. 64, 124010 (2001)

    MathSciNet  ADS  Google Scholar 

  16. Ghez A.M., Salim S., Hornstein S.D., Tanner A., Lu J.R., Morris M., Becklin E.E., Duchêne G.: Stellar orbits around the galactic center black hole. Astrophys. J. 620, 744–757 (2005)

    Article  ADS  Google Scholar 

  17. Joshi Y.C.: Displacement of the sun from the galactic plane. Mon. Not. R. Astron. Soc. 378, 768–776 (2007)

    Article  ADS  Google Scholar 

  18. Laor A.: Line profiles from a disk around a rotating black hole. Astrophys. J. 376, 90–94 (1991)

    Article  ADS  Google Scholar 

  19. Maartens R.: Brane-world gravity. Living Rev. Rel. 7, 7 (2004)

    Google Scholar 

  20. Matt G., Fabian A.C., Ross R.R.: Iron k-alpha lines from x-ray photoionized accretion discs. MNRAS 262(1), 179–186 (1993)

    ADS  Google Scholar 

  21. McClintock J.E., Narayan R., Shafee R.: Estimating the spins of stellar-mass black holes. ArXiv e-prints 707 (2007). In: Livio M., Koekemoer A. (eds.) Cambridge University Press, London (2008)

  22. McClintock, J.E., Narayan, R., Shafee, R.: In: Livio, M., Koekemoer, A. (eds.) Black Holes. Cambridge University Press, London (2008, in press)

  23. Middleton M., Done C., Gierlinski M., Davis S.W.: Black hole spin in grs 1915+105. Mon. Not. R. Astron. Soc. 373, 1004–1012 (2006)

    Article  ADS  Google Scholar 

  24. Misner C.W., Thorne K.S., Wheeler J.A.: Gravitation. W.H. Freeman and Company, San Francisco (1973)

    Google Scholar 

  25. Randall, L., Sundrum, R.: An alternative to compactification. 83(23), 4690–4693 (1999)

  26. Rauch K.P., Blandford R.D.: Optical caustics in a kerr spacetime and the origin of rapid x-ray variability in active galactic nuclei. Astrophys. J. 421, 46–68 (1994)

    Article  ADS  Google Scholar 

  27. Remillard, R.A.: X-ray spectral states and high-frequency qpos in black hole binaries. Astro. Nach. 326(9) (2005)

  28. Remillard R.A., McClintock J.E.: X-ray properties of black-hole binaries. Ann. Rev. Astron. Astrophys. 44(1), 49–92 (2006)

    Article  ADS  Google Scholar 

  29. Sasaki M., Shiromizu T., Maeda K.-I.: Gravity, stability, and energy conservation on the Randall-Sundrum brane world. Phys. Rev. D 62(2), 024008 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  30. Schee, J., Stuchlík, Z.: Optical effects in brany kerr spacetimes. In: Proceedings of RAGtime 8/9: Workshops on black holes and neutron stars, Opava, 15–19/19–21 September 2006/2007 (2007)

  31. Schee, J., Stuchlík, Z.: Spectral line profile in brany kerr spacetime. In: Proceedings of RAGtime 8/9: Workshops on black holes and neutron stars, Opava, 15–19/19–21 September 2006/2007 (2007)

  32. Schee, J., Stuchlík, Z., Juráň, J.: Light escape cones and raytracing in Kerr geometry. In: Proceedings of RAGtime 6/7: Workshops on black holes and neutron stars, Opava, 16–18/18–20 September 2004/2005 (2005)

  33. Shiromizu T., Maeda K., Sasaki M.: The Einstein equations on the 3-brane world. Phys. Rev. 62, 024012 (2000)

    MathSciNet  ADS  Google Scholar 

  34. Strohmayer, T.: Understanding the nature of high inclination low mass X-ray binaries: broad-band and line spectra from A1744-361. In: Chandra Proposal, p. 2377 (2007)

  35. Stuchlík, Z.: Null geodesics in the Kerr–Newman metric. Bull. Astron. Inst. Czech. 32(6) (1981)

  36. Stuchlík Z., Bao G.: Radiation from hot spots orbiting an extreme Reissner–Nordström black hole. Gen. Relativ. Gravit. 24(9), 945–957 (1992)

    Article  ADS  Google Scholar 

  37. Stuchlík, Z., Kotrlová, A.: Orbital resonance model of qpos in braneworld Kerr black hole spacetimes. In: Proceedings of RAGtime 8/9: Workshops on black holes and neutron stars, Opava, 15–19/19–21 September 2006/2007 (2007)

  38. Török, G.: A possible 3:2 orbital epicyclic resonance in QPO frequencies of Sgr A*. Astron. Astrophys. 1(440), 1–4 (2005a)

  39. Török G.: QPOs in microquasars and Sgr A* measuring the black hole spin. Astron. Nachr. 856(326), 856–860 (2005b)

    Article  ADS  Google Scholar 

  40. Török, G., Abramowicz, M., Kluźniak, W., Stuchlík, Z.: The orbital resonance model for twin peak kHz quasi periodic oscillations in microquasars. Astron. Astrophys. 1(436) (2005)

  41. Viergutz S.U.: Image generation in Kerr geometry. I. Analytical investigations on the stationary emitter-observer problem. Astron. Astrophys. 272, 355–377 (1993)

    MathSciNet  ADS  Google Scholar 

  42. Zakharov A.F.: The iron k α-line as a tool for analysis of black hole characteristics. Publ. Astron. Observ. Belgrade 76, 147–162 (2003)

    ADS  Google Scholar 

  43. Zakharov A.F., Repin S.V.: Different types of fe k α lines from radiating annuli near black holes. New Astron. 11, 405–410 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Schee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schee, J., Stuchlík, Z. Profiles of emission lines generated by rings orbiting braneworld Kerr black holes. Gen Relativ Gravit 41, 1795–1818 (2009). https://doi.org/10.1007/s10714-008-0753-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-008-0753-y

Keywords

Navigation