General Relativity and Gravitation

, Volume 41, Issue 8, pp 1725–1736 | Cite as

A planar perturbation of the Bianchi type I metric

  • Brian Wilson
  • Charles C. Dyer
Research Article


The standard procedure for finding analytic perturbations in General Relativity suffers from the drawback that it is cumbersome to use beyond linear order perturbations. Following up on our previous work, we continue to use an alternate method of finding perturbations. We find a plane symmetric perturbation of the cosmological Bianchi type I metric. The perturbation corresponds to a fluid with heat flow moving perpendicularly to a singular plane in a region which can be made to be either overdense or underdense relative to the background spacetime. The fluid satisfies both the Strong and Dominant energy conditions everywhere except the region close to the singularity.


Perturbation Bianchi type I metric Plane symmetry Fluid with heat flow 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wilson B., Dyer C.C.: Gen. Relativ. Gravit. 39, 2001 (2007)MATHCrossRefMathSciNetADSGoogle Scholar
  2. 2.
    Seidel E.: Classical Quantum Gravit. 21, S339 (2004)MATHCrossRefMathSciNetADSGoogle Scholar
  3. 3.
    Mars M.: Class. Quantum Gravit. 22, 3325 (2005)MATHCrossRefMathSciNetADSGoogle Scholar
  4. 4.
    Nakamura K.: Phys. Rev. D 74, 101301 (2006)CrossRefADSGoogle Scholar
  5. 5.
    Herrero A., Portilla M.: Gen. Relativ. Gravit. 37, 1205 (2005)MATHCrossRefMathSciNetADSGoogle Scholar
  6. 6.
    Wiltshire R., Messenger P.: Gen. Relativ. Gravit. 36, 1213 (2004)MATHCrossRefMathSciNetADSGoogle Scholar
  7. 7.
    Cabezas J.A., Martin J., Molina A., Ruiz E.: Gen. Relativ. Gravit. 39, 707 (2007)MATHCrossRefMathSciNetADSGoogle Scholar
  8. 8.
    Stephani H.: General Relativity—An Introduction to the Theory of the Gravitational Field, 2nd edn. Cambridge University Press, Cambridge (1990)MATHGoogle Scholar
  9. 9.
    Silva R., Lima S., Calvão M.O.: Gen. Relativ. Gravit. 34, 865 (2002)MATHCrossRefGoogle Scholar
  10. 10.
    Subrahmanyan R., Saripalli L., Safouris V., Hunstead R.W.: Astrophys. J. 677, 63–78 (2008)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of TorontoTorontoCanada
  2. 2.Department of Astronomy and AstrophysicsUniversity of TorontoTorontoCanada

Personalised recommendations