General Relativity and Gravitation

, Volume 41, Issue 5, pp 1125–1137 | Cite as

Cosmological model with interactions in the dark sector

  • Luis P. Chimento
  • Mónica Forte
  • Gilberto M. Kremer
Research Article


A cosmological model for the present Universe is analyzed whose constituents are a non-interacting baryonic matter field and interacting dark matter and dark energy fields. The dark energy and dark matter are coupled through their effective barotropic indexes, which are considered as functions of the ratio of their energy densities. Two asymptotically stable cases are investigated for the ratio of the dark energy densities which have their parameters adjusted by considering best fits to Hubble function data. It is shown that the deceleration parameter, the density parameters, and the luminosity distance have the correct behavior which is expected for a viable present scenario of the Universe.


Dark energy Dark matter Interacting fluids 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Riess A.G. et al.: Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009 (1998)CrossRefADSGoogle Scholar
  2. 2.
    Riess A.G. et al.: BVRI light curves for 22 Type Ia Supernovae. Astron. J. 117, 707 (1999)CrossRefADSGoogle Scholar
  3. 3.
    Perlmutter S. et al.: Measurements of omega and lambda from 42 high-redshift supernovae. Astrophys. J. 517, 565 (1999)CrossRefADSGoogle Scholar
  4. 4.
    Astier P. et al.: The supernova legacy survey: measurement of ΩM, ΩΛ and w from the first year data set. Astron. Astrophys. 447, 31 (2006)CrossRefADSGoogle Scholar
  5. 5.
    Spergel D.N. et al.: First year Wilkinson microwave anisotropy probe (WMAP) observations: determination of cosmological parameters. Astrophys. J. Suppl. 148, 175 (2003)CrossRefADSGoogle Scholar
  6. 6.
    Spergel D.N. et al.: Wilkinson microwave anisotropy probe (WMAP) three year results: implications for cosmology. Astrophys. J. Suppl. 170, 377 (2007)CrossRefADSGoogle Scholar
  7. 7.
    Eisenstein D.J. et al.: Detection of the baryon acoustic peak in the large-scale correlation Function of SDSS Luminous Red Galaxies. Astrophys. J. 633, 560 (2005)CrossRefADSGoogle Scholar
  8. 8.
    Sahni V., Starobinsky A.A.: The case for a positive cosmological lambda-term. Int. J. Mod. Phys. D 9, 373 (2000)ADSGoogle Scholar
  9. 9.
    Sahni V.: Dark matter and dark energy. In: Papantonopoulos, E.(eds) The physics of the early universe. Lecture Notes in Physics, vol. 653, Springer, Berlin (2005)Google Scholar
  10. 10.
    Carroll S.M.: The Cosmological Constant. Living Rev. Rel. 4, 1 (2001)Google Scholar
  11. 11.
    Padmanabhan T.: Cosmological constant: the weight of the vacuum. Phys. Rept. 380, 235 (2003)MATHCrossRefADSMathSciNetGoogle Scholar
  12. 12.
    Peebles P.J.E., Ratra B.: The cosmological constant and dark energy. Rev. Mod. Phys. 75, 559 (2003)CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    Copeland E.J., Sami M., Tsujikawa S.: Dynamics of dark energy. Int. J. Mod. Phys. D 15, 1753 (2006)MATHCrossRefADSMathSciNetGoogle Scholar
  14. 14.
    Weinberg S.: The cosmological constant problem. Rev. Mod. Phys. 61, 1 (1989)MATHCrossRefADSMathSciNetGoogle Scholar
  15. 15.
    Steinhardt P.J.: Critical Problems in Physics. In: Fitch V.L., Marlow D.R., Dementi M.A.E. (eds). Princeton University Press, Princeton (1997)Google Scholar
  16. 16.
    Chimento L.P., Jakubi A.S., Pavon D.: Enlarged Q-matter cosmology. Phys. Rev. D 62, 063508 (2000)CrossRefADSGoogle Scholar
  17. 17.
    Chimento L.P., Jakubi A.S., Pavon D., Zimdahl W.: Interacting quintessence solution to the coincidence problem. Phys. Rev. D 67, 083513 (2003)CrossRefADSGoogle Scholar
  18. 18.
    Binder J.B., Kremer G.M.: Model for a Universe described by a non-minimally coupled scalar field and interacting dark matter. Gen. Relativ. Gravit. 38, 857 (2006)MATHCrossRefADSMathSciNetGoogle Scholar
  19. 19.
    Tocchini-Valentini D., Amendola L.: Stationary dark energy with a baryon dominated era: solving the coincidence problem with a linear coupling. Phys. Rev. D 65, 063508 (2002)CrossRefADSGoogle Scholar
  20. 20.
    Farrar G.R., Peebles P.J.E.: Interacting dark matter and dark energy. Astrophys. J. 604, 1 (2004)CrossRefADSGoogle Scholar
  21. 21.
    Kremer G.M.: Dark energy interacting with neutrinos and dark matter: a phenomenological theory. Gen. Relativ. Gravit. 39, 965–972 (2007)MATHCrossRefADSMathSciNetGoogle Scholar
  22. 22.
    Huey G., Wandelt B.D.: Interacting quintessence, the coincidence problem and cosmic acceleration. Phys. Rev. D 74, 023519 (2006)CrossRefADSGoogle Scholar
  23. 23.
    Mangano G., Miele G., Pettorino V.: Coupled quintessence and the coincidence problem. Mod. Phys. Lett. A 18, 831 (2006)CrossRefADSGoogle Scholar
  24. 24.
    Chimento, L.P., Forte, M.: Unified model of baryonic matter and dark components. Phys. Lett. B [arXiv:0706.4142] [astro-ph]Google Scholar
  25. 25.
    Cai R.G., Wang A.: Cosmology with interaction between phantom dark energy and dark matter and the coincidence problem. JCAP 0503, 002 (2005)ADSGoogle Scholar
  26. 26.
    Amendola L.: Coupled quintessence. Phys. Rev. D 62, 043511 (2000)CrossRefADSGoogle Scholar
  27. 27.
    Amendola L., Tocchini-Valentini D.: Stationary dark energy: the present Universe as a global attractor. Phys. Rev. D 64, 043509 (2001)CrossRefADSGoogle Scholar
  28. 28.
    Amendola L., Tocchini-Valentini D.: Baryon bias and structure formation in an accelerating Universe. Phys. Rev. D 66, 043528 (2002)CrossRefADSGoogle Scholar
  29. 29.
    Amendola L., Quercellini C., Tocchini-Valentini D., Pasqui A.: Constraints on the interaction and self-interaction of dark energy from cosmic microwave background. Astrophys. J. 583, L53 (2003)CrossRefADSGoogle Scholar
  30. 30.
    Dalal N., Abazajian K., Jenkins E.E., Manohar A.V.: Testing the cosmic coincidence problem and the nature of dark energy. Phys. Rev. Lett. 87, 141302 (2001)CrossRefADSGoogle Scholar
  31. 31.
    Amendola L., Camargo Campos G., Rosenfeld R.: Consequences of dark matter–dark energy interaction on cosmological parameters derived from SNIa data. Phys. Rev. D 75, 083506 (2007)CrossRefADSGoogle Scholar
  32. 32.
    Guo Z.K., Ohta N., Tsujikawa S.: Probing the coupling between dark components of the Universe. Phys. Rev. D 76, 023508 (2007)CrossRefADSGoogle Scholar
  33. 33.
    Boehmer C.G., Caldera-Cabral G., Lazkoz R., Maartens R.: Dynamics of dark energy with a coupling to dark matter. Phys. Rev. D 78, 023505 (2008)CrossRefADSGoogle Scholar
  34. 34.
    Pavón, D., Wang, B.: Le Châtelier-Braun Principle in Cosmological Physics. Gen. Relativ. Gravit. (2008, in press)Google Scholar
  35. 35.
    Zimdahl W., Pavon D.: Interacting quintessence. Phys. Lett. B 521, 133 (2001)MATHCrossRefADSGoogle Scholar
  36. 36.
    Simon J., Verde L., Jimenez R.: Constraints on the redshift dependence of the dark energy potential. Phys. Rev. D 71, 123001 (2005)CrossRefADSGoogle Scholar
  37. 37.
    Abraham R.G. et al.: The Gemini deep deep survey: I. Introduction to the survey, catalogs and composite spectra. Astron. J. 127, 2455 (2004)CrossRefADSGoogle Scholar
  38. 38.
    Treu T., Stiavelli M., Moller P., Casertano S., Bertin G.: The properties of field elliptical galaxies at intermediate redshift. II: photometry and spectroscopy of an HST selected sample. Mon. Not. R. Astron. Soc. 326, 21 (2001)ADSGoogle Scholar
  39. 39.
    Nolan P.L., Tompkins W.F., Grenier I.A., Michelson P.F.: Variability of EGRET gamma-ray sources. Astrophys. J. 597, 615 (2003)CrossRefADSGoogle Scholar
  40. 40.
    Press W.H. et al.: Numerical Recipes. Cambridge University Press, Cambridge (1997)Google Scholar
  41. 41.
    Freedman W.L. et al.: Final results from the Hubble Space Telescope key project to measure the Hubble constant. Astrophys. J. 553, 47 (2001)CrossRefADSGoogle Scholar
  42. 42.
    Virey J.M. et al.: Determination of the deceleration parameter from supernovae data. Phys. Rev. D 72, 061302(R) (2005)CrossRefADSGoogle Scholar
  43. 43.
    Riess A.G. et al.: Type Ia Supernova discoveries at z > 1 from the Hubble Space Telescope: evidence for past deceleration and constraints on dark energy evolution. Astrophys. J. 607, 665 (2004)CrossRefADSGoogle Scholar
  44. 44.
    Riess A.G. et al.: New Hubble Space Telescope discoveries of type Ia supernovae at z > 1: narrowing constraints on the early behavior of dark energy. Astrophys. J. 659, 98 (2007)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Luis P. Chimento
    • 1
  • Mónica Forte
    • 1
  • Gilberto M. Kremer
    • 2
  1. 1.Departamento de Física, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos Aires, Ciudad UniversitariaBuenos AiresArgentina
  2. 2.Departamento de FísicaUniversidade Federal do ParanáCuritibaBrazil

Personalised recommendations