Advertisement

On the physical interpretation of asymptotically flat gravitational fields

  • Carlos Kozameh
  • Ezra T. Newman
  • Gilberto Silva-Ortigoza
Gravity Research Foundation Essay

Abstract

A problem in general relativity is how to extract physical information from solutions to the Einstein equations. Most often information is found from special conditions, e.g., special vector fields, symmetries or approximate symmetries. Our concern is with asymptotically flat space–times with approximate symmetry: the BMS group. For these spaces the Bondi four-momentum vector and its evolution, found at infinity, describes the total energy–momentum and the energy–momentum radiated. By generalizing the simple idea of the transformation of (electromagnetic) dipoles under a translation, we define (analogous to center of charge) the center of mass for asymptotically flat Einstein–Maxwell fields. This gives kinematical meaning to the Bondi four-momentum, i.e., the four-momentum and its evolution which is described in terms of a center of mass position vector, its velocity and spin-vector. From dynamical arguments, a unique (for our approximation) total angular momentum and evolution equation in the form of a conservation law is found.

Keywords

Asymptotically flat space-times 

References

  1. 1.
    Weyl H.: Space-Time-Matter. Methuen, London (1922)MATHGoogle Scholar
  2. 2.
    Sachs R.: Proc. R. Soc. 270, 103 (1962)MATHCrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Bondi H., van der Burg M.G.J., Metzner A.W.K.: Proc. R. Soc. Lond. Ser. A. 269, 21 (1962)MATHADSCrossRefGoogle Scholar
  4. 4.
    Szabados, L.B.: Quasi-local energy-momentum and angular momentum in GR: A review article. In: Living Reviews in Relativity, June 2005Google Scholar
  5. 5.
    Helfer A.D.: Gen. Relativity Gravit. 39, 2125–2147 (2007)MATHCrossRefADSMathSciNetGoogle Scholar
  6. 6.
    Dray T., Streubel M.: Class. Quantum Grav. 1, 15–26 (1984)MATHCrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Ashtekar A., Winicour J.: J. Math. Phys. 23, 2410–2417 (1982)MATHCrossRefADSMathSciNetGoogle Scholar
  8. 8.
    Aronson B., Newman E.T.: J. Math. Phys. 13, 1847–1851 (1972)MATHCrossRefADSMathSciNetGoogle Scholar
  9. 9.
    Newman E.T.: Class. Quantum Grav. 21, 3197–3221 (2004)MATHCrossRefADSGoogle Scholar
  10. 10.
    Kozameh C., Newman E.T.: Class. Quantum Grav. 22, 4659–4665 (2005)MATHCrossRefADSMathSciNetGoogle Scholar
  11. 11.
    Kozameh, C., Newman, E.T., Silva-Ortigoza, G.: On extracting physical content from asymptotically flat space-time metrics. Class. Quantum. Grav. (2008, submitted)Google Scholar
  12. 12.
    Newman E.T., Silva-Ortigoza G.: Class. Quantum Grav. 23, 497–509 (2006)MATHCrossRefADSMathSciNetGoogle Scholar
  13. 13.
    Penrose R.: Phys. Rev. Ltt. 10, 66 (1963)CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    Newman Ezra T., Penrose R.: J. Math. Phys. 3, 566–768 (1962)CrossRefADSGoogle Scholar
  15. 15.
    Newman, E.T., Tod, K.P.: In: Held, A. (ed.) General Relativity and Gravitation, vol. 2. Plenum, New York (1980)Google Scholar
  16. 16.
    Newman E.T., Couch E., Chinnapared K., Exton A., Prakash A., Torrence R.: J. Math. Phys. 6, 918 (1965)CrossRefADSMathSciNetGoogle Scholar
  17. 17.
    Newman E.T.: Phys. Rev. D. 65, 104005 (2002)CrossRefADSGoogle Scholar
  18. 18.
    Rivas M., Aguirregabiria J.M., Hernandez A.: Phys. Lett. A. 257, 21–25 (1999)CrossRefADSGoogle Scholar
  19. 19.
    Mathisson M.: Proc. Camb. Phil. Soc. 38, 40–60 (1942)MathSciNetGoogle Scholar
  20. 20.
    Landau L.D., Lifschitz E.M.: Classical Theory of Fields. Addison-Wesley, Reading (1962)MATHGoogle Scholar
  21. 21.
    Thirring W.: Principles of Quantum Electrodynamics, p. 25. Academic Press, New York (1958)Google Scholar
  22. 22.
    Held A., Newman E.T., Posadas R.: J. Math. Phys. 11, 3145 (1970)MATHCrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Carlos Kozameh
    • 1
  • Ezra T. Newman
    • 2
  • Gilberto Silva-Ortigoza
    • 3
  1. 1.FaMaFUniversity of CordobaCordobaArgentina
  2. 2.Department of Physics and AstronomyUniversity of PittsburghPittsburghUSA
  3. 3.Facultad de Ciencias Físico Matemáticasde la Universidad Autónoma de PueblaPueblaMexico

Personalised recommendations