Advertisement

General Relativity and Gravitation

, Volume 41, Issue 1, pp 147–152 | Cite as

An elementary derivation of the five dimensional Myers–Perry metric

  • Jun-Jin Peng
Research Article
  • 58 Downloads

Abstract

We derive the five dimensional Myers–Perry metric via an elementary method to solve the vacuum Einstein field equations directly. This method firstly proposed by Clotz is very simple since it merely involves four components of Ricci tensor and only requires us to deal with some equations without second derivatives’ terms when the metric ansatz is assumed to take an appropriate form.

Keywords

Myers–Perry metric Five dimensional solution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Myers R.C. and Perry M.J. (1986). Ann. Phys. (N.Y.) 172: 304 MATHCrossRefADSMathSciNetGoogle Scholar
  2. 2.
    Emparan, R., Reall, H.S.: Phys. Rev. Lett. 88, 101101, hep-th/0110260 (2002)Google Scholar
  3. 3.
    Elvang, H., Emparan, R., Mateos, D., Reall, H.S.: Phys. Rev. Lett. 93, 211302, hep-th/0407065 (2004)Google Scholar
  4. 4.
    Emparan, R., Reall, H.S.: arXiv:0801.3471 [hep-th]Google Scholar
  5. 5.
    Harmark T. (2004). Phys. Rev. D 70: 124002 CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    Harmark T. and Olesen P. (2005). Phys. Rev. D 72: 124017 CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Aliev, A.N.: Mod. Phys. Lett. A 21, 751 gr-qc/0505003 (2006)Google Scholar
  8. 8.
    Shuang-Qing Wu.: Phys. Rev. Lett. 100, 121301, arXiv:0709.1749 [hep-th] (2008)Google Scholar
  9. 9.
    Dimopoulos S. and Landsberg G. (2001). Phys. Rev. Lett. 87: 161602 CrossRefADSGoogle Scholar
  10. 10.
    Giddings S.B. and Thomas S.D. (2002). Phys. Rev. D 65: 056010 CrossRefADSGoogle Scholar
  11. 11.
    Kanti, P.: Int. J. Mod. Phys. A 19, 4899 hep-ph/0402168 (2004)Google Scholar
  12. 12.
    Ernst F.J. (1968). Phys. Rev. 167: 1175 CrossRefADSGoogle Scholar
  13. 13.
    Ernst F.J. (1968). Phys. Rev. 168: 1415 CrossRefADSGoogle Scholar
  14. 14.
    Stephani H., Kramer D., MacCallum M., Hoenselaers C. and Herlt E. (2003). Exact Solutions of Einsteins Field Equations, 2nd edn. Cambridge University Press, Cambridge Google Scholar
  15. 15.
    Kerr R.P. (1963). Phys. Rev. Lett. 11: 237 MATHCrossRefADSMathSciNetGoogle Scholar
  16. 16.
    Newman E.T., Couch E., Chinapared K., Exton A., Prakash A. and Torrence R. (1965). J. Math. Phys. 6: 918 CrossRefADSGoogle Scholar
  17. 17.
    Pomeransky, A.A., Sen’kov, R.A.: hep-th/0612005Google Scholar
  18. 18.
    Lü, H., Mei, J.W., Pope, C.N.: arXiv:0804.1152 [hep-th]Google Scholar
  19. 19.
    Pomeransky, A.A.: Phys. Rev. D 73, 044004, hep-th/0507250 (2006)Google Scholar
  20. 20.
    Giusto, S., Saxena, A.: Class. Quantum Grav. 24, 4269, arXiv:0705.4484 [hep-th] (2007)Google Scholar
  21. 21.
    Clotz A.H. (1982). Gen. Rel. Grav. 14: 727 CrossRefADSGoogle Scholar
  22. 22.
    Gui Y.X., Zhang J.G., Zhang Y. and Chen F.P. (1984). Acta Phys. Sin. 33: 1129 MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.College of Physical Science and TechnologyCentral China Normal UniversityWuhanPeople’s Republic of China

Personalised recommendations