General Relativity and Gravitation

, Volume 40, Issue 12, pp 2659–2683 | Cite as

Quantum nature of cosmological bounces

  • Martin Bojowald
Research Article


Several examples are known where quantum gravity effects resolve the classical big bang singularity by a bounce. The most detailed analysis has probably occurred for loop quantum cosmology of isotropic models sourced by a free, massless scalar. Once a bounce has been realized under fairly general conditions, the central questions are how strongly quantum it behaves, what influence quantum effects can have on its appearance, and what quantum space-time beyond the bounce may look like. This, then, has to be taken into account for effective equations which describe the evolution properly and can be used for further phenomenological investigations. Here, we provide the first analysis with interacting matter with new effective equations valid for weak self-interactions or small masses. They differ from the free scalar equations by crucial terms and have an important influence on the bounce and the space-time around it. Especially the role of squeezed states, which have often been overlooked in this context, is highlighted. The presence of a bounce is proven for uncorrelated states, but as squeezing is a dynamical property and may change in time, further work is required for a general conclusion.


Quantum cosmology Big bang singularity Bounce Squeezed states 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bojowald, M.: Loop Quantum Cosmology. Living Review Relativity 8, 11, [gr-qc/0601085], (2005)
  2. 2.
    Bojowald, M.: Absence of a Singularity in Loop Quantum Cosmology. Phys. Rev. Lett. 86, 5227– 5230, [gr-qc/0102069] (2001)Google Scholar
  3. 3.
    Bojowald, M.: Isotropic loop quantum cosmology. Class. Quantum Grav. 19, 2717–2741, [gr-qc/ 0202077] (2002)Google Scholar
  4. 4.
    Ashtekar, A., Bojowald, M., Lewandowski, J.: Mathematical structure of loop quantum cosmology. Adv. Theor. Math. Phys. 7, 233–268, [gr-qc/0304074] (2003)Google Scholar
  5. 5.
    Bojowald, M.: Singularities and Quantum Gravity. In: Proceedings of the XIIth Brazilian School on Cosmology and Gravitation, AIP Conference Proceedings 910, 294–333, [gr-qc/0702144] (2007)Google Scholar
  6. 6.
    Ashtekar, A., Pawlowski, T., Singh, P.: Quantum nature of the big bang. Phys. Rev. Lett. 96, 141301, [gr-qc/0602086] (2006)Google Scholar
  7. 7.
    Ashtekar, A., Pawlowski, T., Singh, P.: Quantum nature of the big bang: an analytical and numerical investigation. Phys. Rev. D 73, 124038, [gr-qc/0604013] (2006)Google Scholar
  8. 8.
    Bojowald, M.: Large scale effective theory for cosmological bounces. Phys. Rev. D 75, 081301(R), [gr-qc/0608100] (2007)Google Scholar
  9. 9.
    Bojowald M. (2007). What happened before the big bang?. Nat Phys 3: 523–525 CrossRefGoogle Scholar
  10. 10.
    Bojowald, M.: Harmonic cosmology: how much can we know about a universe before the big bang? Proc. Roy. Soc. A. doi: 10.1098/rspa.2008.0050, [arXiv:0710.4919]
  11. 11.
    Corichi, A., Singh, P.: Quantum bounce and cosmic recall, arXiv:0710.4543Google Scholar
  12. 12.
    Bojowald, M., Hernández, H., Skirzewski, A.: Effective equations for isotropic quantum cosmology including matter. Phys. Rev. D 76, 063511, [arXiv:0706.1057] (2007)Google Scholar
  13. 13.
    Bojowald, M., Kastrup, H.A.: Symmetry reduction for quantized diffeomorphism invariant theories of connections. Class. Quantum Grav. 17, 3009–3043, [hep-th/9907042] (2000)Google Scholar
  14. 14.
    Bojowald, M., Hernández, H.H., Morales-Técotl, H.A.: Perturbative degrees of freedom in loop quantum gravity: Anisotropies. Class. Quantum Grav. 23, 3491–3516, [gr-qc/0511058] (2006)Google Scholar
  15. 15.
    Engle, J.: Quantum field theory and its symmetry reduction. Class. Quant. Grav. 23, 2861–2893, [gr-qc/0511107] (2006)Google Scholar
  16. 16.
    Koslowski, T.: Reduction of a quantum theory, gr-qc/0612138Google Scholar
  17. 17.
    Bojowald, M.: Loop quantum cosmology and inhomogeneities. Gen. Rel. Grav. 38, 1771–1795, [gr-qc/0609034] (2006)Google Scholar
  18. 18.
    Engle, J.: Relating loop quantum cosmology to loop quantum gravity: symmetric sectors and embeddings. Class. Quantum Grav. 24, 5777–5802, [gr-qc/0701132] (2007)Google Scholar
  19. 19.
    Koslowski, T.: A Cosmological sector in loop quantum gravity, arXiv:0711.1098Google Scholar
  20. 20.
    Weiss N. (1985). Constraints on Hamiltonian lattice formulations of field theories in an expanding universe. Phys. Rev. D 32: 3228–3232 CrossRefADSMathSciNetGoogle Scholar
  21. 21.
    Unruh, W.: Time, gravity, and quantum mechanics. In: Savitt, S.F. (ed). Time’s arrows today. pp. 23–94, [gr-qc/9312027]Google Scholar
  22. 22.
    Jacobson, T.: Trans-Planckian redshifts and the substance of the space-time river, hep-th/0001085Google Scholar
  23. 23.
    Doldán, R., Gambini, R., Mora, P.: Quantum mechanics for totally constrained dynamical systems and evolving Hilbert spaces. Int. J. Theor. Phys. 35, 2057, [hep-th/9404169] (1996)Google Scholar
  24. 24.
    Bojowald, M.: The dark side of a patchwork universe. Gen. Rel. Grav. 40, 639–660, [arXiv:0705.4398] (2008)Google Scholar
  25. 25.
    Ashtekar, A., Pawlowski, T., Singh, P.: Quantum nature of the big bang: improved dynamics. Phys. Rev. D 74, 084003, [gr-qc/0607039] (2006)Google Scholar
  26. 26.
    Bojowald, M., Cartin, D., Khanna, G.: Lattice refining loop quantum cosmology, anisotropic models and stability. Phys. Rev. D 76, 064018, [arXiv:0704.1137] (2007)Google Scholar
  27. 27.
    Nelson, W., Sakellariadou, M.: Lattice refining LQC and the matter Hamiltonian, Phys. Rev. D 76, 104003, [arXiv:0707.0588] (2007)Google Scholar
  28. 28.
    Nelson, W., Sakellariadou, M.: Lattice refining loop quantum cosmology and inflation. Phys. Rev. D 76, 044015, [arXiv:0706.0179] (2007)Google Scholar
  29. 29.
    Bojowald, M., Hossain, G.: Cosmological vector modes and quantum gravity effects, Class. Quantum Grav. 24, 4801–4816, [arXiv:0709.0872] (2007)Google Scholar
  30. 30.
    Bojowald, M., Hossain, G.: Quantum gravity corrections to gravitational wave dispersion. Phys. Rev. D 77, 023508, [arXiv:0709.2365] (2008)Google Scholar
  31. 31.
    Vandersloot, K.: On the Hamiltonian constraint of loop quantum cosmology. Phys. Rev. D 71, 103506, [gr-qc/0502082] (2005)Google Scholar
  32. 32.
    Bojowald, M.: Inverse scale factor in isotropic quantum geometry. Phys. Rev. D 64, 084018, [gr-qc/0105067] (2001)Google Scholar
  33. 33.
    Thiemann, T.: QSD V: Quantum gravity as the natural regulator of matter quantum field theories. Class. Quantum Grav. 15, 1281–1314, [gr-qc/9705019] (1998)Google Scholar
  34. 34.
    Bojowald, M.: Quantization ambiguities in isotropic quantum geometry. Class. Quantum Grav. 19, 5113–5130, [gr-qc/0206053] (2002)Google Scholar
  35. 35.
    Bojowald, M.: Loop quantum cosmology: recent progress. Pramana 63, 765–776, [gr-qc/0402053]. In: Proceedings of the international conference on gravitation and cosmology (ICGC 2004), Cochin, India (2004)Google Scholar
  36. 36.
    Bojowald, M.: Loop quantum cosmology IV: discrete time evolution. Class. Quantum Grav. 18, 1071–1088, [gr-qc/0008053] (2001)Google Scholar
  37. 37.
    Brunnemann, J., Thiemann, T.: Unboundedness of triad-like operators in loop quantum gravity. Class. Quantum Grav. 23, 1429–1483, [gr-qc/0505033] (2006)Google Scholar
  38. 38.
    Bojowald, M.: Degenerate configurations, singularities and the non-abelian nature of loop quantum gravity. Class. Quantum Grav. 23, 987–1008, [gr-qc/0508118] (2006)Google Scholar
  39. 39.
    Thiemann, T.: Quantum spin dynamics (QSD). Class. Quantum Grav. 15, 839–873, [gr-qc/9606089] (1998)Google Scholar
  40. 40.
    Thiemann, T.: Quantum spin dynamics (QSD) II: the kernel of the Wheeler-DeWitt constraint operator. Class. Quantum Grav. 15, 875–905, [gr-qc/9606090] (1998)Google Scholar
  41. 41.
    Sabharwal, S., Khanna, G.: Numerical solutions to lattice-refined models in loop quantum cosmology. Class. Quantum Grav. 25, 085009, [arXiv:0711.2086] (2008)Google Scholar
  42. 42.
    Bojowald, M.: The semiclassical limit of loop quantum cosmology. Class. Quantum Grav. 18, L109–L116, [gr-qc/0105113] (2001)Google Scholar
  43. 43.
    Bojowald, M.: Homogeneous loop quantum cosmology. Class. Quantum Grav. 20, 2595–2615, [gr-qc/0303073] (2003)Google Scholar
  44. 44.
    Bojowald, M., Date, G., Vandersloot, K.: Homogeneous loop quantum cosmology: the role of the spin connection. Class. Quantum Grav. 21, 1253–1278, [gr-qc/0311004] (2004)Google Scholar
  45. 45.
    Bojowald, M.: Non-singular black holes and degrees of freedom in quantum gravity. Phys. Rev. Lett. 95, 061301, [gr-qc/0506128] (2005)Google Scholar
  46. 46.
    Bojowald, M.: Dynamical coherent states and physical solutions of quantum cosmological bounces. Phys. Rev. D 75, 123512, [gr-qc/0703144] (2007)Google Scholar
  47. 47.
    Bojowald, M., Skirzewski, A.: Effective equations of motion for quantum systems. Rev. Math. Phys. 18, 713–745, [math-ph/0511043] (2006)Google Scholar
  48. 48.
    Bojowald, M., Skirzewski, A.: Quantum gravity and higher curvature actions. Int. J. Geom. Meth. Mod. Phys. 4, 25–52, [hep-th/0606232]. In: Borowiec, A., Francaviglia, M. (eds.) Proceedings of “Current Mathematical Topics in Gravitation and Cosmology” (42nd Karpacz Winter School of Theoretical Physics) (2007)Google Scholar
  49. 49.
    Singh, P.: Loop cosmological dynamics and dualities with Randall-Sundrum braneworlds. Phys. Rev. D 73, 063508, [gr-qc/0603043] (2006)Google Scholar
  50. 50.
    Date, G., Hossain, G.M.: Effective Hamiltonian for isotropic loop quantum cosmology. Class. Quantum Grav. 21, 4941–4953, [gr-qc/0407073] (2004)Google Scholar
  51. 51.
    Date, G., Hossain, G.M.: Genericity of big bounce in isotropic loop quantum cosmology. Phys. Rev. Lett. 94, 011302, [gr-qc/0407074] (2005)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Institute for Gravitation and the CosmosThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations