Advertisement

General Relativity and Gravitation

, Volume 40, Issue 9, pp 1891–1898 | Cite as

A Curvature Principle for the interaction between universes

  • Orfeu Bertolami
Research Article

Abstract

We propose a Curvature Principle to describe the dynamics of interacting universes in a multi-universe scenario and show, in the context of a simplified model, how interaction drives the cosmological constant of one of the universes toward a vanishingly small value. We also conjecture on how the proposed Curvature Principle suggests a solution for the entropy paradox of a universe where the cosmological constant vanishes.

Keywords

Multi-universe Curvature Principle Cosmological constant 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Will, C.M.: Was Einstein right? Testing relativity at the centenary. In: Ashtekar, A. (ed.) 100 years of Relativity: Spacetime Structure—Einstein and Beyond. World Scientific, Singapore. gr-qc/0504086Google Scholar
  2. 2.
    Bertolami, O., Páramos, J., Turyshev, S.G.: General theory of relativity: will it survive the next decade? In: 359th WE-Heraeus Seminar: Lasers, Clock, and Drag-Free: Technologies for Future Exploration in Space and Gravity Tests. gr-qc/0602016Google Scholar
  3. 3.
    Olive K. (1900). Phys. Rep. 190: 307 CrossRefADSGoogle Scholar
  4. 4.
    Copeland E.J., Sami M. and Tsujikawa S. (2006). Int. J. Mod. Phys. D 15: 1753 MathSciNetADSGoogle Scholar
  5. 5.
    Bento M.C., Bertolami O. and Sen A.A. (2002). Phys. Rev. D 66: 043507 ADSGoogle Scholar
  6. 6.
    Silva P.T. and Bertolami O. (2003). Ap. J. 599: 829 CrossRefADSGoogle Scholar
  7. 7.
    Bertolami O., Sen A.A., Sen S. and Silva P.T. (2004). Mon. Not. R. Ast. Soc. 353: 329 CrossRefADSGoogle Scholar
  8. 8.
    Bento M.C., Bertolami O. and Sen A.A. (2004). Phys. Rev. D 70: 083519 ADSGoogle Scholar
  9. 9.
    Bertolami O. and Silva P.T. (2006). Mon. Not. R. Ast. Soc. 365: 1149 ADSCrossRefGoogle Scholar
  10. 10.
    Bertolami O. and Duvvuri V. (2006). Phys. Lett. B640: 121 ADSGoogle Scholar
  11. 11.
    Bento M.C., Bertolami O., Rosenfeld R. and Teodoro L. (2000). Phys. Rev. D 62: 041302 ADSGoogle Scholar
  12. 12.
    Bento M.C., Bertolami O. and Rosenfeld R. (2001). Phys. Lett. B 518: 276 ADSGoogle Scholar
  13. 13.
    Mcdonald J. (1994). Phys. Rev D 50: 3637 ADSGoogle Scholar
  14. 14.
    Bertolami O. and Nunes F. (1999). Phys. Lett. B 452: 108 ADSGoogle Scholar
  15. 15.
    Bertolami, O.: Dark energy, Dark Matter and Gravity. astro-ph/0608276Google Scholar
  16. 16.
    Weinberg S. (1989). Rev. Mod. Phys. 61: 1 MATHCrossRefMathSciNetADSGoogle Scholar
  17. 17.
    Wilczek, F.: How far are we from the gauge forces. In: Zichichi, A. (ed.) Proceedings of the 1983 Erice Conference. Plenum Press, New York (1983)Google Scholar
  18. 18.
    Bertolami O. and Schiappa R. (1999). Class. Quantum. Gravity 16: 2545 MATHCrossRefMathSciNetADSGoogle Scholar
  19. 19.
    Carroll S. (2001). The cosmological constant. Living Rev. Rel. 4: 1 Google Scholar
  20. 20.
    Bauer, F.: The Cosmological Constant and Discrete Space-Times. hep-th/0610178Google Scholar
  21. 21.
    Witten, E.: The Cosmological Constant From The Viewpoint Of String Theory. hep-ph/0002297Google Scholar
  22. 22.
    Bertolami, O.: The adventures of spacetime. In: Petkov, V. (ed.) Relativity and the Dimensionality of the Word. Fundamental Theories of Physics, vol. 153, Springer, Heidelberg (2007). gr-qc/0607006Google Scholar
  23. 23.
    Bousso R. and Polchinski J. (2000). JHEP 0006: 006 CrossRefMathSciNetADSGoogle Scholar
  24. 24.
    Susskind, L.: The Anthropic Landscape of String Theory. hep-th/0603249Google Scholar
  25. 25.
    Susskind L (2005). The Cosmic Landscape: String Theory and the Illusion of Intelligent Design. Little, Brown, New York Google Scholar
  26. 26.
    Holman, R., Mersini-Houghton, L.: Why the Universe Started from a Low Entropy State. hep-th/0511102Google Scholar
  27. 27.
    Holman, R., Mersini-Houghton, L.: Why did the Universe Start from a Low Entropy State? hep-th/0512070Google Scholar
  28. 28.
    Polchinski, J.: The Cosmological Constant and the String Landscape. hep-th/0603249Google Scholar
  29. 29.
    Linde A. (1988). Phys. Lett. B 200: 272 ADSGoogle Scholar
  30. 30.
    Coleman S (1988). Nucl. Phys. B307: 867 CrossRefADSGoogle Scholar
  31. 31.
    Fischler W., Klebanov I., Polchinski J. and Susskind L. (1989). Nucl. Phys. B 327: 157 CrossRefMathSciNetADSGoogle Scholar
  32. 32.
    Bertolami O. (1997). Class. Quantum. Gravity 14: 2785 MATHCrossRefMathSciNetADSGoogle Scholar
  33. 33.
    Bertolami O. and Carvalho C. (2006). Phys. Rev. D 74: 084020 MathSciNetADSGoogle Scholar
  34. 34.
    ’t Hooft G. and Nobbenhuis S. (2006). Class. Quantum. Gravity 23: 3819 MATHCrossRefMathSciNetADSGoogle Scholar
  35. 35.
    Bento M.C., Bertolami O., Santos N.M.C. and Sen A.A. (2005). Phys. Rev. D 71: 063501 ADSGoogle Scholar
  36. 36.
    Bento M.C., Bertolami O., Rebouças M.J. and Santos N.M.C. (2006). Phys. Rev. D 73: 103521 ADSGoogle Scholar
  37. 37.
    Bento M.C., Bertolami O., Rebouças M.J. and Silva P.T. (2006). Phys. Rev. D 73: 043504 ADSGoogle Scholar
  38. 38.
    Einstein, A.: Sitz. Berl. Preuss. Akad. Wiss (1919)Google Scholar
  39. 39.
    Unruh W. (1989). Phys. Rev. D 40: 1048 MathSciNetADSGoogle Scholar
  40. 40.
    Unruh W. and Wald B.M. (1989). Phys. Rev. D 40: 2598 MathSciNetADSGoogle Scholar
  41. 41.
    Bertolami O. (1995). Int. J. Mod. Phys. D 4: 97 MathSciNetADSGoogle Scholar
  42. 42.
    Markov M. (1987). Pis’ma Zh. Eksp. Teor. Fiz. 36: 214 Google Scholar
  43. 43.
    Markov M (1987). Pis’ma Zh. Eksp. Teor. Fiz. 46: 431 Google Scholar
  44. 44.
    Brandenberger R.H., Mukhanov V.F. and Sornborger A. (1993). Phys. Rev. D 48: 1629 MathSciNetADSGoogle Scholar
  45. 45.
    Easson D.A. and Brandenberger R.H. (1999). JHEP 9909: 003 CrossRefMathSciNetADSGoogle Scholar
  46. 46.
    Easson D.A. (2003). Phys. Rev. D 68: 043514 MathSciNetADSGoogle Scholar
  47. 47.
    Zwiebach, B.: Closed string field theory: an introduction. In: Les Houches Summer School 647-678 (1992) hep-th/9305026Google Scholar
  48. 48.
    Penrose, R.: In: Hawking, S.W., Israel, W. (eds.) General Relativity: An Einstein Centenary Survey. Cambridge University Press, Cambridge (1979)Google Scholar
  49. 49.
    Penrose, R.: In: Isham, C.J., Penrose, R., Sciama, D.W. (eds.) Quantum Gravity 2: A Second Oxford Symposium. Clarendon Press, Oxford (1981)Google Scholar
  50. 50.
    Fischler, W., Susskind, L.: Holography and Cosmology. hep-th/9806039Google Scholar
  51. 51.
    Bousso R. (1999). JHEP 9906: 028 CrossRefMathSciNetADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Departamento de FísicaInstituto Superior TécnicoLisbonPortugal
  2. 2.Instituto de Plasmas e Fusão NuclearInstituto Superior TécnicoLisbonPortugal

Personalised recommendations