Advertisement

General Relativity and Gravitation

, Volume 40, Issue 6, pp 1249–1278 | Cite as

Orbits in the field of a gravitating magnetic monopole

  • Valeria Kagramanova
  • Jutta Kunz
  • Claus Lämmerzahl
Research Article

Abstract

Orbits of test particles and light rays are an important tool to study the properties of space-time metrics. Here we systematically study the properties of the gravitational field of a globally regular magnetic monopole in terms of the geodesics of test particles and light. The gravitational field depends on two dimensionless parameters, defined as ratios of the characteristic mass scales present. For critical values of these parameters the resulting metric coefficients develop a singular behavior, which has profound influence on the properties of the resulting space-time and which is clearly reflected in the orbits of the test particles and light rays.

Keywords

Particle motion Magnetic monopole Einstein–Yang–Mills–Higgs theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ehlers J. (2006). Gen. Relat. Grav. 38: 1059 MATHCrossRefADSMathSciNetGoogle Scholar
  2. 2.
    Hagihara Y. (1931). Theory of relativistic trajectories in a gravitational field of Schwarzschild. Japan. J. Astron. Geophys. 8: 67 MathSciNetGoogle Scholar
  3. 3.
    Chandrasekhar S. (1983). The Mathematical Theory of Black Holes. Oxford University Press, Oxford MATHGoogle Scholar
  4. 2.
    Hackmann, E., Lämmerzahl, C.: Complete analytic solution of the geodesic equation in Scwharzschild–(anti) de Sitter space–times. University of Bremen [preprint]Google Scholar
  5. 5.
    Hagihara Y. (1970). Celestial Mechanics. MIT Press, Cambridge MATHGoogle Scholar
  6. 6.
    ‘t Hooft G. (1974). Nucl. Phys. B 79: 276 CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Polyakov A.M. (1974). Pis’ma JETP 20: 430 Google Scholar
  8. 8.
    Lee K., Nair V.P. and Weinberg E.J. (1992). Phys. Rev. D 45: 2751 CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    Breitenlohner P., Forgacs P. and Maison D. (1992). Nucl. Phys. B 383: 357 CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    Breitenlohner P., Forgacs P. and Maison D. (1995). Nucl. Phys. B 442: 126 MATHCrossRefADSMathSciNetGoogle Scholar
  11. 11.
    Bartnik R. and McKinnon J. (1988). Phys. Rev. Lett. 61: 141 CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    Volkov M.S. and Gal’tsov D.V. (1999). Phys. Rept. 319: 1 CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    Hartle, J.B.: Gravity. An Introduction to Einstein’s General Relativity. Addison Wesley, ReadingGoogle Scholar
  14. 14.
    Frolov V.P. and Novikov I.D. (1998). Black Hole Physics. Kluwer, Dordrecht MATHGoogle Scholar
  15. 15.
    Misner C.W., Thorne K. and Wheeler J.A. (1973). Gravitation. Freeman, San Francisco Google Scholar
  16. 16.
    Lue A. and Weinberg E.J. (1999). Phys. Rev. D 60: 084025 CrossRefADSMathSciNetGoogle Scholar
  17. 17.
    Ascher U., Christiansen J. and Russell R.D. (1979). A collocation solver for mixed order systems of boundary value problems. Math. Comput. 33: 659 MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Ascher U., Christiansen J. and Russell R.D. (1981). Collocation software for boundary-value ODEs. ACM Trans. 7: 209 MATHGoogle Scholar
  19. 19.
    Kleihaus B., Kunz J. and Navarro-Lérida F. (2004). Phys. Rev. D 69: 081501 CrossRefADSMathSciNetGoogle Scholar
  20. 20.
    Kunz J. and Navarro-Lérida F. (2006). Phys. Rev. Lett. 96: 081101 CrossRefADSMathSciNetGoogle Scholar
  21. 21.
    Kunz J. and Navarro-Lérida F. (2006). Mod. Phys. Lett. A 21: 2621 MATHCrossRefADSGoogle Scholar
  22. 22.
    Kunz J. and Navarro-Lérida F. (2006). Phys. Lett. B 643: 55 CrossRefADSMathSciNetGoogle Scholar
  23. 23.
    Ansorg M. and Petroff D. (2006). Class. Quant. Grav. 23: L81 MATHCrossRefADSMathSciNetGoogle Scholar
  24. 24.
    Chicone C., Mashhoon B. and Punsly B. (2005). Phys. Lett. A 343: 1 CrossRefADSGoogle Scholar
  25. 25.
    Lämmerzahl, C., Preuss, O., Dittus, H.: Is the phyiscs in the Solar System really understood? In: Dittus, H., Lämmerzahl, C., Turyshev, S.G. (eds.) Lasers, Clocks, and Drag-Free Control: Exploration of Relativistic Gravity in Space. Springer, Berlin (2007)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Valeria Kagramanova
    • 1
  • Jutta Kunz
    • 1
  • Claus Lämmerzahl
    • 2
  1. 1.Institut für PhysikUniversität OldenburgOldenburgGermany
  2. 2.ZARM, Universität BremenBremenGermany

Personalised recommendations