Advertisement

General Relativity and Gravitation

, Volume 40, Issue 8, pp 1663–1681 | Cite as

Perfect fluid quantum Universe in the presence of negative cosmological constant

  • P. Pedram
  • M. Mirzaei
  • S. Jalalzadeh
  • S. S. Gousheh
Research Article

Abstract

We present perfect fluid Friedmann–Robertson–Walker quantum cosmological models in the presence of negative cosmological constant. In this work the Schutz’s variational formalism is applied for radiation, dust, cosmic string, and domain wall dominated Universes with positive, negative, and zero constant spatial curvature. In this approach the notion of time can be recovered. These give rise to Wheeler–DeWitt equations for the scale factor. We find their eigenvalues and eigenfunctions by using Spectral Method. After that, we use the eigenfunctions in order to construct wave packets for each case and evaluate the time-dependent expectation value of the scale factors, which are found to oscillate between finite maximum and minimum values. Since the expectation values of the scale factors never tends to the singular point, we have an initial indication that these models may not have singularities at the quantum level.

Keywords

Quantum cosmology Wheeler–DeWitt equation Spectral method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. DeWitt B.S. (1967). Phys. Rev. 160: 1113 MATHCrossRefADSGoogle Scholar
  2. Melnikov, V.N., Reshetov, V.A.: In: Abstract 8 All-Union Conference on Elementary Particles (Uzhgorod). Kiev, ITP, p. 117 (1971)Google Scholar
  3. Barabanenkov, Yu.N., Pilipenko, V.A.: In: Abstract 8 All-Union Conference on Elementary Particles (Uzhgorod). Kiev, ITP, p. 117 (1971)Google Scholar
  4. Misner C.W. (1969). Phys. Rev. 186: 1419 CrossRefADSGoogle Scholar
  5. Barabanenkov, Yu.N.: In: Abstract 3 Soviet Gravitational Conference, Yerevan (1972)Google Scholar
  6. Kalinin M.I. and Melnikov V.N. (2003). Gravit. Cosmol. 9: 227 MATHADSMathSciNetGoogle Scholar
  7. Arnowitt, R., Deser, S., Misner, C.W.: Gravitation: An introduction to current research. In: Witten, L. (ed.) Wiley, New York (1962)Google Scholar
  8. Isham, C.J.: Canonical quantum gravity and the problem of time. arXiv:gr-qc/9210011Google Scholar
  9. Tipler F.J. (1986). Phys. Rep. 137: 231 CrossRefADSMathSciNetGoogle Scholar
  10. Kiefer C. (1988). Phys. Rev. D 38: 1761 CrossRefADSMathSciNetGoogle Scholar
  11. Schutz B.F. (1970). Phys. Rev. D 2: 2762 CrossRefADSMathSciNetGoogle Scholar
  12. Schutz B.F. (1971). Phys. Rev. D 4: 3559 CrossRefADSGoogle Scholar
  13. Pedram, P., Jalalzadeh, S., Gousheh, S.S.: Phys. Lett. B 655, 91 (2007). arXiv:0708.4143Google Scholar
  14. Pedram, P., Jalalzadeh, S., Gousheh, S.S.: Class. Quant. Gravit. 24, 5515 (2007). arXiv:0709.1620Google Scholar
  15. Pedram, P., Jalalzadeh, S., Gousheh, S.S.: Int. J. Theor. Phys. 46, 3201 (2007), arXiv:0705.3587Google Scholar
  16. Pedram, P., Jalalzadeh, S.: Phys. Lett. B (2007). doi: 10.1016/j.physletb.2007.11.013, arXiv:0705.3587
  17. Gotay M.J. and Demaret J. (1983). Phys. Rev. D 28: 2402 CrossRefADSMathSciNetGoogle Scholar
  18. Lapchinskii V.G. and Rubakov V.A. (1977). Theor. Math. Phys. 33: 1076 CrossRefGoogle Scholar
  19. Alvarenga F.G. and Lemos N.A. (1998). Gen. Relat. Gravit. 30: 681 MATHCrossRefADSMathSciNetGoogle Scholar
  20. Acaciode Barros J., Pinto-Neto N. and Sagioro-Leal M.A. (1998). Phys. Lett. A 241: 229 CrossRefADSGoogle Scholar
  21. Alvarenga F.G., Fabris J.C., Lemos N.A. and Monerat G.A. (2002). Gen. Relat. Gravit. 34: 651 MATHCrossRefGoogle Scholar
  22. Monerat G.A., Silva E.V.C., Oliveira-Neto G., Filho L.G.F. and Lemos N.A. (2006). Phys. Rev. D 73: 044022 CrossRefADSMathSciNetGoogle Scholar
  23. Amore, P., Aranda, A., Cervantes, M., Dìaz-Cruz, J.L., Fernàndez, F.M.: Phys. Rev. D 75, 068503 (2007). arXiv:gr-qc/0611029Google Scholar
  24. Boyd J.P. (2001). Chebyshev and Fourier Spectral Methods, 2nd edn. Dover, New York MATHGoogle Scholar
  25. Pedram, P., Mirzaei, M., Gousheh, S.S.: arXiv:math-ph/0611008Google Scholar
  26. Pedram P., Mirzaei M. and Gousheh S.S. (2007). Comput. Phys. Commun. 176: 581 CrossRefADSMathSciNetGoogle Scholar
  27. Assad M.J. and Lima J.A.S. (1988). Gen. Relat. Gravit. 20: 527 CrossRefADSGoogle Scholar
  28. Lemos N.A. (1996). J. Math. Phys. 37: 1449 MATHCrossRefADSMathSciNetGoogle Scholar
  29. Everett H. III (1957). Rev. Mod. Phys. 29: 454 CrossRefADSMathSciNetGoogle Scholar
  30. Chhajlany S.C. and Malnev V.N. (1990). Phys. Rev. A 42: 3111 CrossRefADSGoogle Scholar
  31. Chhajlany S.C., Letov D.A. and Malnev V.N. (1991). J. Phys. A 24: 2731 MATHCrossRefADSMathSciNetGoogle Scholar
  32. Amore P. (2006). J. Phys. A 39: L349 MATHCrossRefADSMathSciNetGoogle Scholar
  33. Stevenson P.M. (1981). Phys. Rev. D 23: 2916 CrossRefADSGoogle Scholar
  34. Lemos N.A., Monerat G.A., Silva E.V.C., Oliveira-Neto G. and Ferreira Filho L.G. (2007). Phys. Rev. D 75: 068504 CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • P. Pedram
    • 1
  • M. Mirzaei
    • 1
  • S. Jalalzadeh
    • 1
  • S. S. Gousheh
    • 1
  1. 1.Department of PhysicsShahid Beheshti UniversityEvin, TehranIran

Personalised recommendations