Advertisement

General Relativity and Gravitation

, Volume 40, Issue 2–3, pp 607–637 | Cite as

The cosmological constant

  • Raphael Bousso
Research Article

Abstract

The energy density of the vacuum, Λ, is at least 60 orders of magnitude smaller than several known contributions to it. Approaches to this problem are tightly constrained by data ranging from elementary observations to precision experiments. Absent overwhelming evidence to the contrary, dark energy can only be interpreted as vacuum energy, so the venerable assumption that Λ = 0 conflicts with observation. The possibility remains that Λ is fundamentally variable, though constant over large spacetime regions. This can explain the observed value, but only in a theory satisfying a number of restrictive kinematic and dynamical conditions. String theory offers a concrete realization through its landscape of metastable vacua.

Keywords

String Theory Dark Energy Cosmological Constant Extra Dimension Vacuum Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hawking, S.W., Ellis, G.F.R.: The Large Scale Stucture of Space-Time. Cambridge University Press, Cambridge (1973)Google Scholar
  2. 2.
    Gibbons, G.W., Hawking, S.W.: Cosmological event horizons, thermodynamics, and particle creation. Phys. Rev. D 15, 2738 (1977)CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Edwards, D.: Exact expressions for the properties of the zero-pressure Friedmann models. M.N.R.A.S. 159, 51 (1972)ADSGoogle Scholar
  4. 4.
    Polchinski, J.: The cosmological constant and the string landscape. (2006), hep-th/0603249Google Scholar
  5. 5.
    Weinberg, S.: The cosmological constant problem. Rev. Mod. Phys. 61, 1 (1989)CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    Carroll, S.M.: The cosmological constant, astro-ph/0004075Google Scholar
  7. 7.
    Bousso, R.: Precision cosmology and the landscape. (2006), hep-th/0610211Google Scholar
  8. 8.
    Dyson, L., Kleban, M., Susskind, L.: Disturbing implications of a cosmological constant. JHEP 10, 011 (2002), hep-th/0208013Google Scholar
  9. 9.
    Banks, T.: Entropy and initial conditions in cosmology. (2007), hep-th/0701146Google Scholar
  10. 10.
    Linde, A.D.: The inflationary universe. Rept. Prog. Phys. 47, 925 (1984)CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    Sakharov, A.D.: Cosmological transitions with a change in metric signature. Sov. Phys. JETP 60, 214 (1984)Google Scholar
  12. 12.
    Banks, T.: T C P, quantum gravity, the cosmological constant and all that. Nucl. Phys. B 249, 332 (1985)CrossRefADSGoogle Scholar
  13. 13.
    Linde, A.: Inflation and quantum cosmology. In: Hawking, S.W., Israel, W.(eds) 300 Years of Gravitation, pp. 604–630. Cambridge University Press, Cambridge (1987)Google Scholar
  14. 14.
    Weinberg, S.: Anthropic bound on the cosmological constant. Phys. Rev. Lett. 59, 2607 (1987)CrossRefADSGoogle Scholar
  15. 15.
    Davies, P.C.W., Unwin, S.D.: Why is the cosmological constant so small. Proc. R. Soc. Lond. A 377, 147 (1982)ADSMathSciNetGoogle Scholar
  16. 16.
    Barrow, J.D., Tipler, F.J.: The Anthropic Cosmological Principle. Clarendon Press, Oxford (1986)Google Scholar
  17. 17.
    Riess, A.G., et al.: Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009 (1998), astro-ph/9805201Google Scholar
  18. 18.
    Perlmutter, S., et al.: Measurements of Omega and Lambda from 42 high-redshift supernovae. Astrophys. J. 517, 565 (1999), astro-ph/9812133Google Scholar
  19. 19.
    Tegmark, M., et al.: Cosmological constraints from the SDSS luminous red galaxies. Phys. Rev. D 74, 123507 (2006), astro-ph/0608632Google Scholar
  20. 20.
    Albrecht, A., et al.: Report of the Dark Energy Task Force. (2006), astro-ph/0609591Google Scholar
  21. 21.
    Brown, J.D., Teitelboim, C.: Dynamical neutralization of the cosmological constant. Phys. Lett. B 195, 177 (1987)CrossRefADSGoogle Scholar
  22. 22.
    Brown, J.D., Teitelboim, C.: Neutralization of the cosmological constant by membrane creation. Nucl. Phys. B 297, 787 (1988)CrossRefADSMathSciNetGoogle Scholar
  23. 23.
    Abbott, L.F.: A mechanism for reducing the value of the cosmological constant. Phys. Lett. B 150, 427 (1985)CrossRefADSMathSciNetGoogle Scholar
  24. 24.
    Duff, M.J., Nieuwenhuizen, P.: Quantum inequivalence of different field representations. Phys. Lett. B 94, 179 (1980)CrossRefADSGoogle Scholar
  25. 25.
    Aurilia, A., Nicolai, H., Townsend, P.K.: Hidden constants: The theta parameter of QCD and the cosmological constant of N=8 supergravity. Nucl. Phys. B 176, 509 (1980)CrossRefADSMathSciNetGoogle Scholar
  26. 26.
    Bousso, R., Polchinski, J.: Quantization of four-form fluxes and dynamical neutralization of the cosmological constant. JHEP 06, 006 (2000), hep-th/0004134Google Scholar
  27. 27.
    Steinhardt, P.J., Turok, N.: Why the cosmological constant is small and positive. Science 312, 1180 (2006), astro-ph/0605173Google Scholar
  28. 28.
    Hawking, S.W.: The cosmological constant is probably zero. Phys. Lett. B 134, 403 (1984)CrossRefADSMathSciNetGoogle Scholar
  29. 29.
    Klebanov, I.R., Susskind, L., Banks, T.: Wormholes and the cosmological constant. Nucl. Phys. B 317, 665 (1989)CrossRefADSMathSciNetGoogle Scholar
  30. 30.
    Coleman, S.: Why there is nothing rather than something: A theory of the cosmological constant. Nucl. Phys. B 310, 643 (1988)CrossRefADSGoogle Scholar
  31. 31.
    Coleman, S., Luccia, F.D.: Gravitational effects on and of vacuum decay. Phys. Rev. D 21, 3305 (1980)CrossRefADSMathSciNetGoogle Scholar
  32. 32.
    Guth, A.H., Weinberg, E.J.: Could the universe have recovered from a slow first-order phase transition?. Nucl. Phys. B 212, 321 (1983)CrossRefADSGoogle Scholar
  33. 33.
    Dasgupta, K., Rajesh, G., Sethi, S.: M theory, orientifolds and g-flux. JHEP 08, 023 (1999), hep-th/9908088Google Scholar
  34. 34.
    Giddings, S.B., Kachru, S., Polchinski, J.: Hierarchies from fluxes in string compactifications. Phys. Rev. D 66, 106006 (2002), hep-th/0105097Google Scholar
  35. 35.
    Silverstein, E.: TASI / PiTP / ISS lectures on moduli and microphysics. (2004), hep-th/0405068Google Scholar
  36. 36.
    Grana, M.: Flux compactifications in string theory: A comprehensive review. Phys. Rept. 423, 91 (2006), hep-th/0509003Google Scholar
  37. 37.
    Douglas, M.R., Kachru, S.: Flux compactification. (2006), hep-th/0610102Google Scholar
  38. 38.
    Kachru, S., Kallosh, R., Linde A., Trivedi, S.P.: De Sitter vacua in string theory. Phys. Rev. D 68, 046005 (2003), hep-th/0301240Google Scholar
  39. 39.
    Silverstein, E.: (A)dS backgrounds from asymmetric orientifolds. (2001), hep-th/0106209Google Scholar
  40. 40.
    Maloney, A., Silverstein, E., Strominger, A.: De Sitter space in noncritical string theory. (2002), hep-th/0205316Google Scholar
  41. 41.
    Denef, F., Douglas, M.R.: Distributions of flux vacua. JHEP 05, 072 (2004), hep-th/0404116Google Scholar
  42. 42.
    Farhi, E., Guth, A.H.: An obstacle to creating a universe in the laboratory. Phys. Lett. B 183, 149 (1987)CrossRefADSGoogle Scholar
  43. 43.
    Page, D.N.: Typicality defended. (2007), arXiv:0707.4169 [hep-th]Google Scholar
  44. 44.
    Douglas, M.R.: The statistics of string / M theory vacua. JHEP 05, 046 (2003), hep-th/0303194Google Scholar
  45. 45.
    Gmeiner, F., Blumenhagen, R., Honecker, G., Lust, D., Weigand, T.: One in a billion: MSSM-like D-brane statistics. JHEP 01, 004 (2006), hep-th/0510170Google Scholar
  46. 46.
    Douglas, M.R., Taylor, W.: The landscape of intersecting brane models. JHEP 01, 031 (2007), hep-th/0606109Google Scholar
  47. 47.
    Kumar, J.: A review of distributions on the string landscape. Int. J. Mod. Phys. A21, 3441 (2006), hep-th/0601053Google Scholar
  48. 48.
    Vafa, C.: The string landscape and the swampland. (2005), hep-th/0509212Google Scholar
  49. 49.
    Arkani-Hamed, N., Motl, L., Nicolis, A., Vafa, C.: The string landscape, black holes and gravity as the weakest force. JHEP 06, 060 (2007), hep-th/0601001Google Scholar
  50. 50.
    Ooguri, H., Vafa, C.: On the geometry of the string landscape and the swampland. Nucl. Phys. B766, 21 (2007), hep-th/0605264Google Scholar
  51. 51.
    Linde, A., Linde, D., Mezhlumian, A.: From the big bang theory to the theory of a stationary universe. Phys. Rev. D 49, 1783 (1994), gr-qc/9306035Google Scholar
  52. 52.
    García-Bellido, J., Linde, A., Linde, D.: Fluctuations of the gravitational constant in the inflationary Brans–Dicke cosmology. Phys. Rev. D 50, 730 (1994), astro-ph/9312039Google Scholar
  53. 53.
    Garriga, J., Vilenkin, A.: A prescription for probabilities in eternal inflation. Phys. Rev. D 64, 023507 (2001), gr-qc/0102090Google Scholar
  54. 54.
    Garriga, J., Schwartz-Perlov, D., Vilenkin, A., Winitzki, S.: Probabilities in the inflationary multiverse. JCAP 0601, 017 (2006), hep-th/0509184Google Scholar
  55. 55.
    Easther, R., Lim, E.A., Martin, M.R.: Counting pockets with world lines in eternal inflation (2005), astro-ph/0511233Google Scholar
  56. 56.
    Linde, A.: Sinks in the landscape, Boltzmann Brains, and the cosmological constant problem. JCAP 0701, 022 (2007), hep-th/0611043Google Scholar
  57. 57.
    Vanchurin, V.: Geodesic measures of the landscape. Phys. Rev. D 75, 023524 (2007), hep-th/0612215Google Scholar
  58. 58.
    Bousso, R.: Holographic probabilities in eternal inflation. Phys. Rev. Lett. 97, 191302 (2006), hep-th/0605263Google Scholar
  59. 59.
    Bousso, R., Freivogel, B., Yang, I.-S.: Eternal inflation: The inside story. Phys. Rev. D 74, 103516 (2006), hep-th/0606114Google Scholar
  60. 60.
    Freivogel, B., Susskind, L.: A framework for the landscape. (2004), hep-th/0408133Google Scholar
  61. 61.
    Feldstein, B., Hall, L.J., Watari, T.: Density perturbations and the cosmological constant from inflationary landscapes. Phys. Rev. D 72, 123506 (2005), hep-th/0506235Google Scholar
  62. 62.
    Garriga, J., Vilenkin, A.: Anthropic prediction for Lambda and the Q catastrophe. Prog. Theor. Phys. Suppl. 163, 245 (2006), hep-th/0508005Google Scholar
  63. 63.
    Page, D.N.: Is our universe likely to decay within 20 billion years? (2006), hep-th/0610079Google Scholar
  64. 64.
    Bousso, R., Freivogel, B.: A paradox in the global description of the multiverse. JHEP 06, 018 (2007), hep-th/0610132Google Scholar
  65. 65.
    Schwartz-Perlov, D., Vilenkin, A.: Probabilities in the Bousso-Polchinski multiverse. JCAP 0606, 010 (2006), hep-th/0601162Google Scholar
  66. 66.
    Linde, A.: Towards a gauge invariant volume-weighted probability measure for eternal inflation. JCAP 0706, 017 (2007), arXiv:0705.1160 [hep-th]Google Scholar
  67. 67.
    Bousso, R., Yang, I.-S.: Landscape predictions from cosmological vacuum selection. Phys. Rev. D 75, 123520 (2007), hep-th/0703206Google Scholar
  68. 68.
    Olum, K.D., Schwartz-Perlov, D.: Anthropic prediction in a large toy landscape (2007), arXiv:0705.2562 [hep-th]Google Scholar
  69. 69.
    Clifton, T., Shenker, S., Sivanandam, N.: Volume weighted measures of eternal inflation in the Bousso-Polchinski landscape (2007), arXiv:0706.3201 [hep-th]Google Scholar
  70. 70.
    Bousso, R.: The holographic principle. Rev. Mod. Phys. 74, 825 (2002), hep-th/0203101Google Scholar
  71. 71.
    Efstathiou, G.P.: M.N.R.A.S. 274, L73 (1995)ADSGoogle Scholar
  72. 72.
    Vilenkin, A.: Quantum cosmology and the constants of nature. gr-qc/9512031Google Scholar
  73. 73.
    Weinberg, S.: Theories of the cosmological constant. astro-ph/9610044Google Scholar
  74. 74.
    Martel, H., Shapiro, P.R., Weinberg, S.: Likely values of the cosmological constant. astro-ph/9701099Google Scholar
  75. 75.
    Vilenkin, A.: Anthropic predictions: the case of the cosmological constant (2004), astro-ph/0407586Google Scholar
  76. 76.
    Weinberg, S.: Living in the multiverse (2005), hep-th/0511037Google Scholar
  77. 77.
    Tegmark, M., Rees, M.J.: Why is the CMB fluctuation level 10−5? Astrophys. J. 499, 526 (1998), astro-ph/9709058Google Scholar
  78. 78.
    Banks, T., Dine, M., Gorbatov, E.: Is there a string theory landscape? JHEP 08, 058 (2004), hep-th/0309170Google Scholar
  79. 79.
    Bousso, R., Harnik, R., Kribs, G.D., Perez, G.: Predicting the cosmological constant from the causal entropic principle. Phys. Rev. D 76, 043513 (2007), hep-th/0702115Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Center for Theoretical Physics, Department of PhysicsUniversity of CaliforniaBerkeleyUSA
  2. 2.Lawrence Berkeley National LaboratoryBerkeleyUSA

Personalised recommendations