Advertisement

General Relativity and Gravitation

, Volume 40, Issue 4, pp 791–798 | Cite as

Constraints from the old quasar APM 08279+5255 on two classes of Λ(t)-cosmologies

  • J. F. Jesus
Research Article

Abstract

The viability of two different classes of Λ(t)CDM cosmologies is tested by using the APM 08279+5255, an old quasar at redshift z = 3.91. In the first class of models, the cosmological term scales as Λ(t) ~ R n . The particular case n = 0 describes the standard ΛCDM model whereas n = 2 stands for the Chen and Wu model. For an estimated age of 2 Gyr, it is found that the power index has a lower limit n > 0.21, whereas for 3 Gyr the limit is n > 0.6. Since n can not be so large as ~ 0.81, the ΛCDM and Chen and Wu models are also ruled out by this analysis. The second class of models is the one recently proposed by Wang and Meng which describes several Λ(t)CDM cosmologies discussed in the literature. By assuming that the true age is 2 Gyr it is found that the ε parameter satisfies the lower bound \(\epsilon > 0.11\) , while for 3 Gyr, a lower limit of \(\epsilon > 0.52\) is obtained. Such limits are slightly modified when the baryonic component is included.

Keywords

Hubble Parameter Cold Dark Matter Cosmological Term Vacuum Energy Density Cosmological Constant Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Perlmutter S. (1999). ApJ 517: 565 CrossRefADSGoogle Scholar
  2. 2.
    Riess A. (1998). Astron. J. 116: 1009 CrossRefADSGoogle Scholar
  3. 3.
    Padmanabhan T. (2003). Phys. Rep. 380: 235 CrossRefADSMathSciNetMATHGoogle Scholar
  4. 4.
    Peebles P.J.E., Ratra B. (2003). Rev. Mod. Phys. 75: 559 CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Lima J.A.S. (2004). Braz. J. Phys. 34: 194 Google Scholar
  6. 6.
    Weinberg S. (1989). Rev. Mod. Phys. 61: 1 CrossRefADSMathSciNetMATHGoogle Scholar
  7. 7.
    Sahni V., Starobinsky A.A. (2000). IJMPD 9: 373 ADSGoogle Scholar
  8. 8.
    Ozer M., Taha O. (1987). Nucl. Phys. B 287: 776 CrossRefADSGoogle Scholar
  9. 9.
    Freese K. (1987). Nucl. Phys. B 287: 797 CrossRefADSGoogle Scholar
  10. 10.
    Carvalho J.C., Lima J.A.S., Waga I. (1992). Phys. Rev. D 46: 2404 CrossRefADSGoogle Scholar
  11. 11.
    Lima J.A.S., Maia J.M.F. (1994). Phys. Rev. D 49: 5597 CrossRefADSGoogle Scholar
  12. 12.
    Lima J.A.S., Trodden M. (1996). Phys. Rev. D 53: 4280 CrossRefADSGoogle Scholar
  13. 13.
    Lima J.A.S. (1996). Phys. Rev. D 54: 2571 CrossRefADSGoogle Scholar
  14. 14.
    Overduin J.M., Cooperstock F.I. (1998). Phys. Rev. D 58: 043506 CrossRefADSGoogle Scholar
  15. 15.
    Cunha J.V. (2002). A&A 390: 809 CrossRefADSGoogle Scholar
  16. 16.
    Cunha J.V., Lima J.A.S., Alcaniz J.S. (2002). Phys. Rev. D 66: 023520 CrossRefADSGoogle Scholar
  17. 17.
    Cunha J.V., Santos R.C. (2004). Int. J. Mod. Phys. D 13: 1321 CrossRefADSMATHGoogle Scholar
  18. 18.
    Camara C.S. (2004). Phys. Rev. D 69: 123504 CrossRefADSMathSciNetGoogle Scholar
  19. 19.
    Bertolami O. (1986). Nuovo Cim. B 93: 36 CrossRefADSGoogle Scholar
  20. 20.
    Alcaniz J.S., Lima J.A.S. (1999). ApJ 521: L87 CrossRefADSGoogle Scholar
  21. 21.
    Alcaniz J.S., Lima J.A.S. (2001). ApJ 550: L133 CrossRefADSGoogle Scholar
  22. 22.
    Lima J.A.S., Alcaniz J.S. (2000). MNRAS 317: 893 CrossRefADSGoogle Scholar
  23. 23.
    Sethi G., Dev A., Jain D. (2005). Phys. Lett. B 624: 135 CrossRefADSGoogle Scholar
  24. 24.
    Jain D., Dev A. (2006). Phys. Lett. B 633: 436 CrossRefADSGoogle Scholar
  25. 25.
    Chen W., Wu Y.-S. (1990). Phys. Rev. D 41: 695 CrossRefADSGoogle Scholar
  26. 26.
    Wang P., Meng X.-H. (2005). Class. Quantum Grav. 22: 283 CrossRefADSMathSciNetMATHGoogle Scholar
  27. 27.
    Hasinger G., Schartel N., Komossa S. (2002). ApJ 573: L77 CrossRefADSGoogle Scholar
  28. 28.
    Friaça A., Alcaniz J.S., Lima J.A.S. (2005). MNRAS 362: 1295 CrossRefADSGoogle Scholar
  29. 29.
    Sisteró R.F. (1991). GRG 23: 1265 Google Scholar
  30. 30.
    Lima J.A.S., Maia J.M.F. (1993). Mod. Phys. Lett. A 8: 591 CrossRefADSGoogle Scholar
  31. 31.
    Matyjasek J. (1995). Phys. Rev. D 51: 4154 CrossRefADSGoogle Scholar
  32. 32.
    Bennett C.L. (2003). ApJ. Suppl. 148: 175 CrossRefADSGoogle Scholar
  33. 33.
    Freedman W.L. (2001). ApJ 553: 47 CrossRefADSGoogle Scholar
  34. 34.
    Alcaniz J.S., Lima J.A.S., Cunha J.V. (2003). MNRAS 340: L39 CrossRefADSGoogle Scholar
  35. 35.
    Alcaniz J.S., Lima J.A.S. (2005). Phys. Rev. D 72: 063516 CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Instituto de Astronomia, Geofísica e Ciências AtmosféricasUSPSão PauloBrazil

Personalised recommendations