Advertisement

General Relativity and Gravitation

, Volume 39, Issue 9, pp 1467–1476 | Cite as

Semiclassical corrections to the Einstein equation and Induced Matter Theory

  • P. Moyassari
  • S. Jalalzadeh
Research Article

Abstract

The induced Einstein equation on a perturbed brane in the Induced Matter Theory is re-analyzed. We indicate that in a conformally flat background, the local quantum corrections to the Einstein equation can be obtained via the IMT. Using the FRW metric as the 4D gravitational model, we show that the classical fluctuations of the brane may be related to the quantum corrections to the classical Einstein equation. In other words, the induced Einstein equation on the perturbed brane can correspond with the semiclassical Einstein equation.

Keywords

Extra Dimension Einstein Equation Quantum Correction Weyl Tensor Extrinsic Curvature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    de Alwis S.P. and MacIntire D.A. (1994). Phys. Rev. D 50: 5164 CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    Livine E.R. (2005). Braz. J. Phys. 35: 442 CrossRefGoogle Scholar
  3. 3.
    Ford L.H. (1982). Ann. Phys. 144: 238 CrossRefADSGoogle Scholar
  4. 4.
    Kuo C.-I. and Ford L.H. (1993). Phys. Rev. D 47: 4510 CrossRefADSGoogle Scholar
  5. 5.
    Birrell N.D. and Davies P.C.W. (1982). Quantum fields in curved space. Cambridge University Press, Cambridge MATHGoogle Scholar
  6. 6.
    Fulling S.A. (1989). Aspects of quantum field theory in curved space. Cambridge University Press, Cambridge, England MATHGoogle Scholar
  7. 7.
    Arkani-Hamed N., Dimopoulos S. and Dvali G. (1998). Phys. Lett. B 429: 263 CrossRefADSGoogle Scholar
  8. 8.
    Arkani-Hamed N., Dimopoulos S. and Dvali G. (1999). Phys. Rev. D 59: 086004 CrossRefADSGoogle Scholar
  9. 9.
    Antoniadis I. (1990). Phys. Lett. B 246: 377 CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    Randall L. and Sundrum R. (1999). Phys. Rev. Lett. 83: 3370 MATHCrossRefADSMathSciNetGoogle Scholar
  11. 11.
    Randall L. and Sundrum R. (1999). Phys. Rev. Lett. 83: 4690 MATHCrossRefADSMathSciNetGoogle Scholar
  12. 12.
    Wesson P.S. (1998). Space-time-matter Kaluza–Klein theory. World Scientific, Singapore Google Scholar
  13. 13.
    Davidson A. and Owen D.A. (1985). Phys. Lett. B 155: 247 CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    Liko T. and wesson P.S. (2005). J. Math. Phys. 46: 062504 CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    Dahia F., Monte E.M. and Romero C. (2003). Mod. Phys. Lett. A 18: 1773 MATHCrossRefADSGoogle Scholar
  16. 16.
    Seahra S.S. (2003). Phys. Rev. D 68: 104027 CrossRefADSMathSciNetGoogle Scholar
  17. 17.
    Poncede Leon J. (2004). Gen. Rel. Grav. 36: 1333 Google Scholar
  18. 18.
    Liko T., Overduin J.M. and Wesson P.S. (2004). Space Sci. Rev. 110: 337 CrossRefADSGoogle Scholar
  19. 19.
    Billyard A.P. and Sajko W.N. (2001). Gen. Rel. Grav. 33: 1929 MATHCrossRefADSMathSciNetGoogle Scholar
  20. 20.
    Wesson P.S. (1984). Astron. Astrophys. 143: 233 ADSMathSciNetGoogle Scholar
  21. 21.
    Banerjee A., Bahui B.K. and Chatterjee S. (1990). Astron. Astrophys. 232: 303 ADSGoogle Scholar
  22. 22.
    Fukui T. (1992). Astron. Astrophys. 253: 1 MATHADSMathSciNetGoogle Scholar
  23. 23.
    Ma G.W. (1991). Astrophys. Space Sci. 181: 331 CrossRefADSGoogle Scholar
  24. 24.
    Berman M.S. and Som M.M. (1993). Astrophys. Space Sci. 207: 105 MATHCrossRefADSGoogle Scholar
  25. 25.
    Poncede Leon J. (2003). Gen. Rel. Grav. 35: 1365 CrossRefADSMathSciNetGoogle Scholar
  26. 26.
    Seahra S.S. and Wesson P.S. (2001). Gen. Rel. Grav. 33: 1731 MATHCrossRefADSMathSciNetGoogle Scholar
  27. 27.
    Mak M.K. and Harko T. (1999). Class. Quantum Grav. 16: 4085 MATHCrossRefADSMathSciNetGoogle Scholar
  28. 28.
    Wesson P.S. and Liu H. (1998). Phys. Lett. B 432: 266 CrossRefADSMathSciNetGoogle Scholar
  29. 29.
    Poncede Leon J. (1993). J. Math. Phys. 34: 4080 CrossRefADSMathSciNetGoogle Scholar
  30. 30.
    Coley A.A. and Mc Manus D.J. (1995). J. Math. Phys. 36: 335 MATHCrossRefADSMathSciNetGoogle Scholar
  31. 31.
    Coley A.A. (1994). Astrophys. J. 427: 585 CrossRefADSGoogle Scholar
  32. 32.
    Wesson P.S. (2002). J. Math. Phys. 43: 2423 MATHCrossRefADSMathSciNetGoogle Scholar
  33. 33.
    Wesson P.S. (2006). Gen. Rel. Grav. 38: 937 MATHCrossRefADSMathSciNetGoogle Scholar
  34. 34.
    Wesson P.S. (2004). Gen. Rel. Grav. 36: 451 MATHCrossRefADSMathSciNetGoogle Scholar
  35. 35.
    Maia M.D. (2002). Phys. Lett. B 297: 9 MATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Eisenhart L.P. (1966). Remannian geometry. Princeton University Press, Princeton Google Scholar
  37. 37.
    Dick R. (2001). Class. Quant. Grav. 18: R1–R24 MATHCrossRefADSMathSciNetGoogle Scholar
  38. 38.
    Rubakov V. and Shaposhnikov M. (1983). Phys. Lett. B 125: 136 CrossRefADSGoogle Scholar
  39. 39.
    Akama K. (1982). Lect. Notes Phys. 176: 267 ADSCrossRefGoogle Scholar
  40. 40.
    Gabadadze, G.: ICTP lectures on large extra dimensions, hep-ph/0308112Google Scholar
  41. 41.
    Jalalzadeh S., Vakili B., Ahmadi F. and Sepangi H.R. (2006). Class. Quant. Grav. 23: 6015 MATHCrossRefADSMathSciNetGoogle Scholar
  42. 42.
    Maziashvili, M.: hep-ph/0607123Google Scholar
  43. 43.
    Wesson P.S. (2002). J. Math. Phys. 43: 2433 CrossRefADSMathSciNetGoogle Scholar
  44. 44.
    Maia M.D., Monte E.M. and Maia J.M.F. (2004). Phys. Lett. B 585: 11 CrossRefADSGoogle Scholar
  45. 45.
    Parker L. and Simon J.Z. (1993). Phys. Rev. D 47: 1339 CrossRefADSMathSciNetGoogle Scholar
  46. 46.
    Joshi P.S. and Joshi S.S. (1988). Class. Quantum Grav. 5: L191 CrossRefADSGoogle Scholar
  47. 47.
    Shankaranarayanan S. and Dadhich N. (2004). Int. J. Mod. Phys. D 13: 1095 MATHCrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of PhysicsTafresh UniversityTafreshIran
  2. 2.Department of PhysicsShahid Beheshti UniversityEvin, TehranIran
  3. 3.Research Institute for Astronomy and Astrophysics of MaraghaMaraghaIran

Personalised recommendations