Advertisement

General Relativity and Gravitation

, Volume 39, Issue 8, pp 1259–1277 | Cite as

Higgs scalar–tensor theory for gravity and the flat rotation curves of spiral galaxies

  • Nils M. Bezares-Roder
  • Heinz Dehnen
Research Article

Abstract

The scalar–tensor theory of gravity with the Higgs field as scalar field is presented. For central symmetry it reproduces the empirically measured flat rotation curves of galaxies. We approximate the galaxy by a polytropic gas sphere with the polytropic index γ = 2 and a massive core.

Keywords

Central Mass Rotation Curve Spiral Galaxy Massive Core Tensor Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    van Albada, T.S.: ESA, SP-183 (1988)Google Scholar
  2. 2.
    Beckenstein J. and Milgrom M. (1984). Astrophys. J. 286: 7 CrossRefADSGoogle Scholar
  3. 3.
    Bezares-Roder, N.M., Nandan, H., Dehnen, H.: Int. J. Theor. Phys. doi: 10.1007/s10773-007-9359-5 (2007)Google Scholar
  4. 4.
    Brans C. and Dicke R.H. (1961). Phys. Rev. 124: 925 MATHCrossRefADSGoogle Scholar
  5. 5.
    Cervantes-Cota J.L. and Dehnen H. (1995). Phys. Rev. D 51: 395 CrossRefADSGoogle Scholar
  6. 6.
    Cervantes-Cota J.L. and Dehnen H. (1995). Nucl. Phys. B 442: 391 CrossRefADSGoogle Scholar
  7. 7.
    Cotsakis, S.: gr-qc/9712046 v1. Talk presented at the 8th Marcel Grossmann Meeting, Jerusalem, June 22–27 (2007)Google Scholar
  8. 8.
    Dehnen H. and Frommert H. (1990). Int. J. Theor. Phys. 29(4): 361 MATHCrossRefGoogle Scholar
  9. 9.
    Dehnen H. and Frommert H. (1991). Int. J. Theor. Phys. 30(7): 985 CrossRefGoogle Scholar
  10. 10.
    Dehnen H. and Frommert H. (1993). Int. J. Theor. Phys. 32(7): 1135 CrossRefGoogle Scholar
  11. 11.
    Dehnen H. and Obregón O. (1972). Astrophys. Sp. Sc. 14: 454 CrossRefADSGoogle Scholar
  12. 12.
    Dehnen H., Frommert H. and Ghaboussi F. (1990). Int. J. Theor. Phys. 29(6): 537 MATHCrossRefGoogle Scholar
  13. 13.
    Dehnen H., Frommert H. and Ghaboussi F. (1992). Int. J. Theor. Phys. 31(1): 109 MATHCrossRefGoogle Scholar
  14. 14.
    Dehnen, H., Ghaboussi, F., Schröder, J.: Wiss. Zeitschr. d. Friedrich-Schiller-Univ. Jena. 39, 41 (1990)Google Scholar
  15. 15.
    Einstein A. (1913). Phys. Zs. 14: 1260 Google Scholar
  16. 16.
    Fäßler A. and Jönsson C. (2005). Die Top Ten der schönsten physikalischen Experimenten. Rororo Science, HamburgGoogle Scholar
  17. 17.
    Fauser B.: Gen. Relativ. Gravit. 33, 875 (2001)Google Scholar
  18. 18.
    Gessner E. (1992). Astrophys Sp. Sc. 194: 197 CrossRefADSGoogle Scholar
  19. 19.
    Hönl H. and Dehnen H. (1968). Zs. f. Astrophys. 68: 181 ADSGoogle Scholar
  20. 20.
    Jordan, P.: Nature 164, 112 (1949)Google Scholar
  21. 21.
    Jordan P. (1955). Schwerkraft und Weltall; Friedr. Vieweg and Sohn Verlag, 2. Aufl., Braunschweig Google Scholar
  22. 22.
    Jordan P. (1968). Zs. f. Astrophys. 68: 201 ADSGoogle Scholar
  23. 23.
    Matos, T., Guzmán, F.S., Núñez, D.: Phys. Rev. D 62(061301R) (2000)Google Scholar
  24. 24.
    Milgrom M. (1983). Astrophys. J. 270: 365 CrossRefADSGoogle Scholar
  25. 25.
    Ostriker J.P. and Peebles P.J.E. (1973). Astrophys. J. 186: 467 CrossRefADSGoogle Scholar
  26. 26.
    Reasenberg, R.D. et al.: Astrophys. J. 234, 219 (1979)Google Scholar
  27. 27.
    Sanders R.H. (1986). Astron. Astrophys. 154: 135 ADSGoogle Scholar
  28. 28.
    Sanders R.H. (1990). Astron. Astrophys. Rev. 2: 1 CrossRefADSGoogle Scholar
  29. 29.
    Zee A. (1979). Phys. Rev. Lett. 42(7): 417 CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Institut für Theoretische PhysikUniversität UlmUlmGermany
  2. 2.Fachbereich PhysikUniversität KonstanzKonstanzGermany

Personalised recommendations