Advertisement

General Relativity and Gravitation

, Volume 39, Issue 3, pp 291–296 | Cite as

Melvin universe as a limit of the C-metric

  • Lenka Havrdová
  • Pavel Krtouš
Research Article

Abstract

It is demonstrated that the Melvin universe representing the spacetime with a strong ‘homogeneous’ electric field can by obtained from the spacetime of two accelerated charged black holes by a suitable limiting procedure. The behavior of various invariantly defined geometrical quantities in this limit is also studied.

Keywords

Black Hole Symmetry Axis Surface Gravity Minkowski Spacetime Charged Black Hole 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Levi-Civita T. (1917). Atti Accad. Naz. Lincei, Cl. Sci. Fis., Mat. Nat., Rend. 26: 307 Google Scholar
  2. 2.
    Kinnersley W. and Walker M. (1970). Phys. Rev. D 2: 1359 CrossRefMathSciNetADSGoogle Scholar
  3. 3.
    Pravda V. and Pravdová A. (2006). Czech. J. Phys. 50: 333 gr-qc/0003067 ADSGoogle Scholar
  4. 4.
    Melvin, M.A. (1964). Phys. Lett. 8: 65 MATHCrossRefMathSciNetADSGoogle Scholar
  5. 5.
    Melvin M.A. (1965). Phys. Rev. 139: B225 CrossRefADSGoogle Scholar
  6. 6.
    Thorne K.S. (1965). Phys. Rev. 139: B244 CrossRefMathSciNetADSGoogle Scholar
  7. 7.
    Havrdová, L.: Diploma thesis, schoolCharles University, addressPrague, Czech Republic, in Czech (2006)Google Scholar
  8. 8.
    Emparan, R., Gutperle, M.: JHEP 0112, 023 hep-th/0111177 (2001)Google Scholar
  9. 9.
    Gibbons, G.W., Herdeiro, C.A.R.: Class. Quantum Grav. 18, 1677 hep-th/0101229 (2001)Google Scholar
  10. 10.
    Hong, K., Teo, E.: Class. Quantum Grav. 20, 3269 gr-qc/0305089 (2003)Google Scholar
  11. 11.
    Griffiths, J.B., Krtouš, P., Podolsky, J.: Class. Quantum Grav. 23, 6745 gr-qc/0609056 (2006)Google Scholar
  12. 12.
    Ashtekar A. and Dray T. (1981). Commun. Math. Phys. 79: 581 CrossRefMathSciNetADSGoogle Scholar
  13. 13.
    Dray T. (1982). Gen. Rel. Grav. 14: 109 MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Farhoosh H. and Zimmerman R.L. (1979). J. Math. Phys. 20: 2272 CrossRefADSGoogle Scholar
  15. 15.
    Bičák, J.: In: MacCaluum, M.A.H. (ed.) Galaxies, Axisymmetric Systems and Relativity, pp. 91–124. Cambridge University Press, Cambridge, UK (1985)Google Scholar
  16. 16.
    Letelier, P.S., Oliveira, S.R.: Phys. Rev. D 64, 064005 gr-qc/9809089 (2001)Google Scholar
  17. 17.
    Krtouš, P.: Phys. Rev. D 72, 124019 gr-qc/0510101(2005)Google Scholar
  18. 18.
    Dias O.J.C. and Lemos J.P.S. (2002). Class. Quantum Grav. 19: 2265 hep-th/0110202 CrossRefMathSciNetADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Institute of Theoretical Physics, Faculty of Mathematics and PhysicsCharles UniversityPrague 8Czech Republic

Personalised recommendations