Advertisement

General Relativity and Gravitation

, Volume 39, Issue 3, pp 257–265 | Cite as

The charged line-mass in general relativity

  • W. B. Bonnor
Research Article

Abstract

The two exterior solutions for a charged line-mass are examined. In both cases the mass per unit length is negative.

Keywords

Quantum Gravity Gravitational Force Test Particle Interior Solution Gravitational Mass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bonnor W.B. (2003). Int. J. Mod. Phys. 12: 1705 MathSciNetADSGoogle Scholar
  2. 2.
    Bonnor W.B. and Martins M.A.P. (1991). Class. Quantum Gravity 8: 727 CrossRefMathSciNetADSGoogle Scholar
  3. 3.
    Bonnor W.B. (1953). Proc. Phys. Soc. 66: 145 MATHMathSciNetADSGoogle Scholar
  4. 4.
    Som M.M. (1964). Proc. Phys. Soc. 83: 328 MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Teixeira A.F.da F., Wolk I. and Som M.M. (1974). J. Math. Phys. 15: 1756 CrossRefGoogle Scholar
  6. 6.
    Witten L. (1962). Gravitation: An Introduction to Current Research, Chap. 9. Wiley, New York Google Scholar
  7. 7.
    Safko J.L. (1970). Ann. Phys. 58: 322 CrossRefMathSciNetADSGoogle Scholar
  8. 8.
    De U.K. and Raychaudhuri A.K. (1968). Proc. R. Soc. A303: 97 ADSGoogle Scholar
  9. 9.
    Grøn O. (1985). Gen. Relat. Gravity 19: 649 CrossRefADSGoogle Scholar
  10. 10.
    Varella V. (2003). Gen. Relat. Gravity 35: 1815 CrossRefADSGoogle Scholar
  11. 11.
    Miguelote A.Y., da Silva M.F.A., Wang A.Z. and Santos N.O. (2001). Class. Quantum Gravity 18: 4569 MATHCrossRefMathSciNetADSGoogle Scholar
  12. 12.
    MacCallum M.A.H. (1983). J. Phys. A 16: 3853 CrossRefMathSciNetADSGoogle Scholar
  13. 13.
    Krori K.D. and Barua J. (1974). Indian J. Pure Appl. Phys. 12: 430 MathSciNetGoogle Scholar
  14. 14.
    Kale P.P. and Purghit A. (1982). Indian J. Pure Appl. Math. 13: 840 MathSciNetGoogle Scholar
  15. 15.
    Papapetrou A. (1947). Proc. R. Ir. Acad. 51: 191 MathSciNetGoogle Scholar
  16. 16.
    Majumdar S.D. (1947). Phys. Rev. 72: 390 CrossRefADSGoogle Scholar
  17. 17.
    Bonnor W.B. and Wickramasuriya S.B.P. (1974). Mon. Not. R. Astron. Soc. 170: 643 ADSGoogle Scholar
  18. 18.
    Synge J.L. (1936). Proc. R. Soc. 157: 434 MATHADSGoogle Scholar
  19. 19.
    Whittaker E.T. (1935). Proc. R. Soc. 149: 384 MATHADSGoogle Scholar
  20. 20.
    Bonnor W.B. (1993). Class. Quantum Gravity 10: 2077 CrossRefMathSciNetADSGoogle Scholar
  21. 21.
    Aguirregabiria J.M., Chamorro A., Suinaga J. and Vishveshwara C.V. (1995). Class. Quantum 12: 699 CrossRefMathSciNetADSGoogle Scholar
  22. 22.
    Perry G.P. and Cooperstock F.I. (1997). Class. Quantum Gravity 14: 1329 MATHCrossRefMathSciNetADSGoogle Scholar
  23. 23.
    Bretón N., Manko V.S. and Sánchez J.A. (1998). Class. Quantum Gravity 15: 3071 MATHCrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Queen MaryUniversity of LondonLondonUK

Personalised recommendations