General Relativity and Gravitation

, Volume 39, Issue 2, pp 111–127 | Cite as

Conditions for non-existence of static or stationary, Einstein–Maxwell, non-inheriting black-holes

  • Paul Tod
Research Article


We consider asymptotically-flat, static and stationary solutions of the Einstein equations representing Einstein–Maxwell space–times in which the Maxwell field is not constant along the Killing vector defining stationarity, so that the symmetry of the space-time is not inherited by the electromagnetic field. We find that static degenerate black hole solutions are not possible and, subject to stronger assumptions, nor are static, non-degenerate or stationary black holes. We describe the possibilities if the stronger assumptions are relaxed.


Black Hole Killing Vector Stationary Black Hole Killing Horizon Maxwell Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    MacCallum, M.A.H.,Van den Bergh, N.: Noninheritance of static symmetry by Maxwell fields. In: MacCallum, M.A.H., (ed.) Galaxies, Axisymmetric Systems and Relativity. Cambridge University Press, Cambridge (1985)Google Scholar
  2. 2.
    Stephani H., Kramer D., MacCallum M., Hoenselaers C. and Herlt E. (2003). Exact Solutions of Einstein’s Field Equations, 2nd ed. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge Google Scholar
  3. 3.
    Chruściel P.T. and Wald R.M. (1994). On the topology of stationary black holes. Class. Quant. Grav. 11: L147–L152 CrossRefGoogle Scholar
  4. 4.
    Michalski H. and Wainwright J. (1975). Killing vector fields and the Einstein–Maxwell field equations in general relativity. Gen. Rel. Grav. 6: 289–318 MATHCrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Heusler, M. Black Hole Uniqueness Theorems. In: Cambridge Lecture Notes in Physics, vol.~6. Cambridge University Press, Cambridge(1996)Google Scholar
  6. 6.
    Misner C.W. and Wheeler J.A. (1957). Classical physics as geometry: gravitation, electromagnetism, unquantized charge and mass as properties of curved empty space. Ann. Phys. NY. 2: 525–603 MATHCrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Racz I. and Wald R.M. (1992). Extensions of space–times with Killing horizons. Class. Quant. Grav. 9: 2643–2656 MATHCrossRefADSMathSciNetGoogle Scholar
  8. 8.
    Bartrum P.C. (1967). Null electromagnetic fields in the form of spherical radiation. J. Math. Phys. 8: 1464–1467 CrossRefADSGoogle Scholar
  9. 9.
    Chruściel P.T., Reall H.S. and Tod P. (2006). On non-existence of static vacuum black holes with degenerate components of the event horizon. Class. Quant. Grav. 23: 549–554 CrossRefADSMATHGoogle Scholar
  10. 10.
    Müller zum Hagen H. (1970). On the analyticity of static vacuum solutions of Einstein’s equations. Proc. Cambridge Philos. Soc. 67: 415–421 MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Müller zum Hagen H. (1970). On the analyticity of stationary vacuum solutions of Einstein’s equation. Proc. Cambridge Philos. Soc. 68: 199–201 MATHMathSciNetGoogle Scholar
  12. 12.
    Chruściel P.T. (2005). On analyticity of static vacuum metrics at non-degenerate Killing horizons. Acta Phys. Polon. B36: 17–26 ADSGoogle Scholar
  13. 13.
    Banerji A. (1970). Null electromagnetic fields in general relativity admitting time-like or null Killing vectors. Jour. Math. Phys. 11: 51–55 CrossRefADSGoogle Scholar
  14. 14.
    Melrose R.B. (1995). Geometric Scattering Theory. Cambridge University Press, Cambridge MATHGoogle Scholar
  15. 15.
    Wald, R.M. General Relativity, University of Chicago Press (1984)Google Scholar
  16. 16.
    Newman, E.T., Tod, K.P. In: Held, A., (ed.) Asymptotically-Flat Space–Times in General Relativity. Plenum Press (1980)Google Scholar
  17. 17.
    Penrose R. and Rindler W. (1984). Spinors and Space-Time I. Cambridge University Press, Cambridge Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Mathematical InstituteUniversity of OxfordOxfordUK

Personalised recommendations