Advertisement

General Relativity and Gravitation

, Volume 38, Issue 12, pp 1839–1859 | Cite as

Towards a general solution of the Hamiltonian constraints of General Relativity

  • A. Tiemblo
  • R. Tresguerres
Research Article

Abstract

The present work has a double aim. On the one hand, we call attention on the relationship existing between the Ashtekar formalism and other gauge-theoretical approaches to gravity, in particular the Poincaré Gauge Theory. On the other hand, we study two kinds of solutions for the constraints of General Relativity, consisting of two mutually independent parts, namely a general three-metric-dependent contribution to the extrinsic curvature K ab in terms of the Cotton–York tensor, and besides it further metric independent contributions, which we analyze in particular in the presence of isotropic three-metrics.

Keywords

Hamiltonian gravity Exact solutions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lopez-Pinto A., Tiemblo A., Tresguerres R. (1997). Class. Quant. Grav. 14, 549 gr-qc/9603023MATHMathSciNetCrossRefADSGoogle Scholar
  2. 2.
    Tiemblo, A., Tresguerres, R.: Recent Res. Devel. Physics, Transworld Research Network 5, 1255 (2004) gr-qc/0510089Google Scholar
  3. 3.
    Ashtekar A., Balachandran A.P., Jo S. (1989). Int. J. Mod. Phys. A4:1493MathSciNetADSGoogle Scholar
  4. 4.
    Arnowitt R., Deser S., Misner C.W. (1960). Phys. Rev. 117:1595MATHMathSciNetCrossRefADSGoogle Scholar
  5. 5.
    Arnowitt R., Deser S., Misner C.W. (1962) The dynamics of general relativity. In: Louis W (eds) Gravitation: an introduction to current research. Wiley, New York, pp. 227–265, gr-qc/0405109Google Scholar
  6. 6.
    DeWitt B.S. (1967). Phys. Rev. 160:1113MATHCrossRefADSGoogle Scholar
  7. 7.
    Barbero J.F. (1995). Phys. Rev. D51:5507 gr-qc/9410014ADSGoogle Scholar
  8. 8.
    Immirzi G. (1997). Nucl. Phys. Proc. Suppl. 57, 65 gr-qc/9701052MATHMathSciNetCrossRefADSGoogle Scholar
  9. 9.
    Samuel J. (2000). Class. Quant. Grav. 17:L141 gr-qc/0005095MATHMathSciNetCrossRefADSGoogle Scholar
  10. 10.
    Dirac P.A.M. (1950). Can J. Math. 2:129MATHMathSciNetGoogle Scholar
  11. 11.
    Ashtekar A. (1986). Phys. Rev. Lett. 57:2244MathSciNetCrossRefADSGoogle Scholar
  12. 12.
    Ashtekar A. (1987). Phys. Rev. D36:1587MathSciNetADSGoogle Scholar
  13. 13.
    Jacobson T., Smolin L. (1988). Class. Quant. Grav. 5, 583MathSciNetCrossRefADSGoogle Scholar
  14. 14.
    Wallner R.P. (1990). Phys. Rev. D42, 441MathSciNetADSGoogle Scholar
  15. 15.
    Wallner R.P. (1992). Phys. Rev. D46:4263MathSciNetADSGoogle Scholar
  16. 16.
    Hehl F.W., Von Der Heyde P., Kerlick G.D., Nester J.M. (1976). Rev. Mod. Phys. 48, 393CrossRefADSGoogle Scholar
  17. 17.
    Gronwald, F., Hehl, F.W.: On the Gauge Aspects of Gravity. In: Proceedings of the 14th course of the school of cosmology and gravitation on quantum gravity, held at Erice, Italy (1995). Bergamann, P.G. de Sabbata, V., Treder, H.-J. (eds.) World Scientific, Singapore (1996) gr-qc/9602013Google Scholar
  18. 18.
    Hehl F.W., McCrea J.D., Mielke E.W., Neeman Y. (1995). Phys. Rept. 258, 1 gr-qc/9402012MathSciNetCrossRefADSGoogle Scholar
  19. 19.
    Tresguerres R., Mielke E.W. (2000). Phys. Rev. D62:044004 gr-qc/0007072MathSciNetADSGoogle Scholar
  20. 20.
    Tresguerres R. (2002). Phys. Rev. D66:064025MathSciNetADSGoogle Scholar
  21. 21.
    Randono, A.: A generalization of the Kodama state for arbitrary values of the Immirzi parameter (2005), gr-qc/0504010Google Scholar
  22. 22.
    Kodama H. (1990). Phys. Rev. D42:2548MathSciNetADSGoogle Scholar
  23. 23.
    Ashtekar A., Baez J.C., Krasnov K. (2000). Adv. Theor. Math. Phys. 4, 1 gr-qc/0005126MATHMathSciNetGoogle Scholar
  24. 24.
    Blagojevic, M.: Gravitation and gauge symmetries, Chap. 5, IOP Publishing, Bristol (2002)Google Scholar
  25. 25.
    Ortín, T.: Gravity and Strings, (Cambridge 2004)Google Scholar
  26. 26.
    Giulini, D.: Lecture Notes of Physics. Springer, Berlin Heidelberg New York 434, 81 (1994)Google Scholar
  27. 27.
    Capovilla R., Jacobson T., Dell J. (1989). Phys. Rev. Lett. 63:2325MathSciNetCrossRefADSGoogle Scholar
  28. 28.
    Barbero, J.F.: Class. Quant. Grav. 12, L5,(1995) gr-qc/9411016Google Scholar
  29. 29.
    Capovilla R., Jacobson T., Dell J. (1991). Class. Quant. Grav. 8, 59MATHMathSciNetCrossRefADSGoogle Scholar
  30. 30.
    Alvarez E. (1989). Rev. Mod. Phys. 61, 561MathSciNetCrossRefADSGoogle Scholar
  31. 31.
    Weinberg S. (1972) Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. Wiley, New YorkGoogle Scholar
  32. 32.
    García A., Hehl F.W., Heinicke C., Macías A. (2004). Class. Quant. Grav. 21:1099 gr-qc/0309008MATHCrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Instituto de Matemáticas y Física FundamentalConsejo Superior de Investigaciones CientíficasMadridSpain

Personalised recommendations