Skip to main content
Log in

Flat Information Geometries in Black Hole Thermodynamics

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The Hessian of either the entropy or the energy function can be regarded as a metric on a Gibbs surface. For two parameter families of asymptotically flat black holes in arbitrary dimension one or the other of these metrics are flat, and the state space is a flat wedge. The mathematical reason for this is traced back to the scale invariance of the Einstein–Maxwell equations. The picture of state space that we obtain makes some properties such as the occurence of divergent specific heats transparent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hawking S.W.(1975). Particle creation by black holes. Commun. Math. Phys. 43, 199

    Article  ADS  MathSciNet  Google Scholar 

  2. Weinhold F.(1976). Thermodynamics and geometry. Phys. Today March 23

  3. Ruppeiner, G.: Riemannian geometry in thermodynamic fluctuation theory. Rev. Mod. Phys. 67, 605 (1995); 68, 313(E) (1996)

    Google Scholar 

  4. Å man J.E., Bengtsson I., Pidokrajt N.(2003). Geometry of black hole thermodynamics. Gen. Rel. Grav. 35: 1733

    Article  ADS  Google Scholar 

  5. Å man J.E., Pidokrajt N.(2006). Geometry of higher-dimensional black hole thermodynamics. Phys. Rev. D 73: 024017

    Article  ADS  MathSciNet  Google Scholar 

  6. Johnston D.A., Janke W., Kenna R.(2003). Information geometry, one, two, three (and four). Acta Phys. Polon. B 34: 4923

    ADS  MathSciNet  MATH  Google Scholar 

  7. Arcioni G., Lozano-Tellechea E.(2005). Stability and critical phenomena of black holes and black rings. Phys. Rev. D 72: 104021

    Article  ADS  MathSciNet  Google Scholar 

  8. Ferrara S., Gibbons G.W., Kallosh R.(1997). Black holes and critical points in moduli space. Nucl. Phys. B 500: 75

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Shen, J., Cai, R.G., Wang, B., Su, R.K.: Thermodynamic geometry and critical behaviour of black holes. arXiv preprint gr-gc/0512035

  10. Bengtsson I., Życzkowski K.(2006). Geometry of Quantum States. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  11. Hankey A., Stanley H.E.(1972). Systematic application of generalized homogeneous functions to static scaling, dynamic scaling, and universality. Phys. Rev. B 6: 3515

    Article  ADS  Google Scholar 

  12. Dubrovin B.: Geometry of 2D topological field theories. In: Francaviglia, M., Greco, S.(eds) Integrable Systems and Quantum Groups. Lecture Notes in Mathematics, vol. 1620. Berlin (1996)

  13. Emparan R., Reall H.S.(2002). A rotating black ring in five dimensions. Phys. Rev. Lett. 88: 101101

    Article  ADS  MathSciNet  Google Scholar 

  14. Myers R.C., Perry M.J.(1986). Black holes in higherdimensional space-times. Ann. Phys. 172: 304

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Bañados M., Teitelboim C., Zanelli J.(1992). The black hole in three-dimensional spacetime. Phys. Rev. Lett. 69: 1849

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Nulton J.D., Salamon P.(1985). Geometry of the ideal gas. Phys. Rev. A 31: 2520

    Article  ADS  Google Scholar 

  17. Davies P.C.W.(1977). The thermodynamic theory of black holes. Proc. Roy. Soc. A 353: 499

    Article  ADS  Google Scholar 

  18. Tranah D., Landsberg P.T.(1980). Thermodynamics of non-extensive entropies II. Collect Phenom. 3: 73

    MathSciNet  Google Scholar 

  19. Penrose R.(2004). The Road to Reality. Jonathan Cape, London

    Google Scholar 

  20. Sorkin R.(1982). A stability criterion for many-parameter families. Astrophys. J. 257: 847

    Article  ADS  MathSciNet  Google Scholar 

  21. Katz J., Okamoto I., Kaburaki O.(1993). Thermodynamic stability of pure black holes. Class. Quant. Grav. 10: 1323

    Article  ADS  MathSciNet  Google Scholar 

  22. Lynden-Bell D.(1998). Negative specific heat in astronomy, physics and chemistry. In: Proceeding of XXth IUPAP Conference on Statistical Physics. Kluwer, Dordrecht

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingemar Bengtsson.

Additional information

Supported by VR.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Åman, J.E., Bengtsson, I. & Pidokrajt, N. Flat Information Geometries in Black Hole Thermodynamics. Gen Relativ Gravit 38, 1305–1315 (2006). https://doi.org/10.1007/s10714-006-0306-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-006-0306-1

Keywords

Navigation