General Relativity and Gravitation

, Volume 38, Issue 6, pp 1083–1094 | Cite as

Invariants of the Riemann tensor: A classical approach

  • S. T. C. Siklos
Research Article


This paper describes the start of an investigation into the application of classical invariant theory to scalar polynomial invariants of the Riemann tensor. In particular, the classical methods of enumerating invariants are discussed with the aim, not achieved in this paper, of verifying Sneddon's result, obtained by explicit calculation of the invariants that the dimension of a Hilbert basis is 38.


General Relativity Riemann tensor Polynomial invariants 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Salmon, G.: Modern Higher Algebra. Chelsea, New York (1866)Google Scholar
  2. 2.
    Hilbert, D.: Theory of Algebraic Invariants. Cambridge, Cambridge University Press (1903)Google Scholar
  3. 3.
    Weyl, H.: Classical Groups. Princeton University Press, Princeton, N.J. (1946)Google Scholar
  4. 4.
    Sneddon, G.E.: J. Math. Phys. 40, 5905 (1999)CrossRefMATHMathSciNetADSGoogle Scholar
  5. 5.
    Penrose, R., Rindler, W.: Spinors and Space-time. Cambridge, CUP (1986)Google Scholar
  6. 6.
    Kramer, D., Stephani, H., MacCallum, M., Herlt, E.: Exact Solutions of Einstein's Equations. Cambridge, Cambridge University Press (1980)Google Scholar
  7. 7.
    Grace, J.H., Young, A.: The Algebra of Invariants. Cambridge, Cambridge University Press (1903)Google Scholar
  8. 8.
    Olver, P.J.: Classical Invariant Theory. London Mathematical Society Student Texts, Cambridge: Cambridge University Press, (1999)Google Scholar

Copyright information

© Springer Science and Business Media Inc., New York 2006

Authors and Affiliations

  1. 1.Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical ScienceUniversity of CambridgeCambridgeUK

Personalised recommendations