Skip to main content
Log in

Vaidya Space-Time in Black-Hole Evaporation

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We take a boundary-value approach to quantum amplitudes arising in gravitational collapse to a black hole. Pose boundary data on initial and final space-like hypersurfaces Σ F,I , separated at spatial infinity by a Lorentzian proper-time interval T. Quantum amplitudes are calculated following Feynman's approach; rotate: T→|T|exp (−iθ) into the complex, where 0< θ≤π/2, and solve the corresponding well-posed complex classical boundary-value problem. We compute the classical Lorentzian action S class and corresponding semi-classical quantum amplitude, proportional to exp (iS class). To recover the Lorentzian amplitude, take the limit θ→ 0+ of the semi-classical amplitude. For the classical boundary-value problem with given perturbative boundary data, we compute an effective spherically-symmetric energy-momentum tensor 〉 T μν EFF , averaged over several wavelengths of the radiation, describing the averaged extra energy-momentum contribution in the Einstein field equations, due to the perturbations. This takes the form of a null fluid, describing the radiation (of quantum origin) streaming radially outwards. The classical space-time metric, in this region of the space time, is of Vaidya form, justifying the adiabatic radial mode equations, for spins s = 0 and s = 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Farley, A.N. St. J., D'Eath, P.D.: Phys. Lett. B. 601, 184 (2004)

    Google Scholar 

  2. Farley, A.N. St. J., D'Eath, P.D.: Phys. Lett. B. 613, 181 (2005)

    Google Scholar 

  3. Farley, A.N. St. J., D'Eath, P.D.: Quantum Amplitudes in Black-Hole Evaporation: I. Complex Approach. submitted for publication (2005)

  4. Farley, A.N. St. J., D'Eath, P.D.: Quantum Amplitudes in Black-Hole Evaporation: II. Spin-0 Amplitude. submitted for publication (2005)

  5. Farley, A.N. St. J., D'Eath, P.D.: Bogoliubov Transformations in Black-Hole Evaporation. submitted for publication (2005)

  6. Stephani, H., Kramer, D., MacCallum, M., Hoenselaers, C., Herlt, E.: {Exact Solutions to Einstein's Field Equations}, 2nd. Edn. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  7. Vaidya, P.C.: Proc. Indian Acad. Sci. A33, 264 (1951)

    MathSciNet  Google Scholar 

  8. Farley, A.N. St. J., D'Eath, P.D.: Class. Quantum Grav. 22, 2765 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Isaacson, R.: Phys. Rev. 166, 1263–1272 (1968)

    Article  ADS  Google Scholar 

  10. Misner, C.W., Thorne, K.S., Wheeler, J.A.: {Gravitation}. Freeman, San Francisco (1973)

    Google Scholar 

  11. Wess, J., Bagger, J.: {Supersymmetry and Supergravity}, 2nd. Edn. Princeton University Press, Princeton (1992)

    Google Scholar 

  12. Bender, C.M., Orszag, S.A.: {Advanced Mathematical Methods for Scientists and Engineers}. Springer, New York (1999)

    MATH  Google Scholar 

  13. Regge, T., Wheeler, J.A.: Phys. Rev. 108, 1063 (1957)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. D'Eath, P.D.: {Supersymmetric Quantum Cosmology}. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  15. Lindquist, R.W., Schwartz, R.A., Misner, C.W.: Phys. Rev. 137, 1364 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  16. Hiscock, W.A.: Phys. Rev. D 23, 2813–2823 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  17. Garabedian, P.R.: {Partial Differential Equations}. Wiley, New York (1964)

    MATH  Google Scholar 

  18. McLean, W.: {Strongly Elliptic Systems and Boundary Integral Equations}. Cambridge University Press, Cambridge (2000); Reula, O.: A configuration space for quantum gravity and solutions to the Euclidean Einstein equations in a slab region. Max-Planck-Institut für Astrophysik MPA, 275 (1987)

  19. Hawking, S.W.: Commun. Math. Phys. 43, 199 (1975); Birrell, N.D., Davies, P.C.W.: {Quantum Fields in Curved Space}. Cambridge University Press, Cambridge (1982); Frolov, V.P., Novikov, I.D.: {Black Hole Physics}. Kluwer Academic, Dordrecht (1998)

  20. Hawking, S.W.: Phys. Rev. D 13, 191 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  21. Casadio, R., Harms, B., Leblanc, Y.: Phys. Rev. D 58, 044014 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  22. Farley, A.N. St. J., D'Eath, P.D.: Class. Quantum Grav. 22, 3001 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. Farley, A.N. St. J., D'Eath, P.D.: Spin-3/2 Amplitudes in Black-Hole Evaporation. in progress

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. D. D'Eath.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farley, A.N.S.J., D'Eath, P.D. Vaidya Space-Time in Black-Hole Evaporation. Gen Relativ Gravit 38, 425–443 (2006). https://doi.org/10.1007/s10714-006-0231-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-006-0231-3

Keywords

Navigation