Advertisement

General Relativity and Gravitation

, Volume 38, Issue 1, pp 61–81 | Cite as

Transition from decelerated to accelerated cosmic expansion in braneworld universes

  • J. Ponce de Leon
Research Article

Abstract

Braneworld theory provides a natural setting to treat, at a classical level, the cosmological effects of vacuum energy. Non-static extra dimensions can generally lead to a variable vacuum energy, which in turn may explain the present accelerated cosmic expansion. We concentrate our attention in models where the vacuum energy decreases as an inverse power law of the scale factor. These models agree with the observed accelerating universe, while fitting simultaneously the observational data for the density and deceleration parameter. The redshift at which the vacuum energy can start to dominate depends on the mass density of ordinary matter. For \(\bar \Omega\) m = 0.3, the transition from decelerated to accelerated cosmic expansion occurs at z T ≈ 0.48 ± 0.20, which is compatible with SNe data. We set a lower bound on the deceleration parameter today, namely \(\bar{q}\) > − 1 + 3 \(\bar \Omega\) m /2, i.e., \(\bar{q}\) > − 0.55 for \(\bar \Omega \) m = 0.3. The future evolution of the universe crucially depends on the time when vacuum starts to dominate over ordinary matter. If it dominates only recently, at an epoch z < 0.64, then the universe is accelerating today and will continue that way forever. If vacuum dominates earlier, at z > 0.64, then the deceleration comes back and the universe recollapses at some point in the distant future. In the first case, quintessence and Cardassian expansion can be formally interpreted as the low energy limit of our model, although they are entirely different in philosophy. In the second case there is no correspondence between these models and ours.

Keywords

Cosmic accelerated expansion Brane theory Cosmology: theory Variable fundamental constants Cardassian expansion Dark matter 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Riess, A.G. et al.: Supernova search team collaboration. Astron. J. 116, 1009 (1998) [astro-ph/9805201]Google Scholar
  2. 2.
    Perlmutter, S. et al.: Astrophys. J. 517, 565 (1999) [astro-ph/9812133.]CrossRefADSGoogle Scholar
  3. 3.
    Liddle, A.R.: New Astron. Rev. 45, 235 (2001) [astro-ph/0009491]CrossRefADSGoogle Scholar
  4. 4.
    Seto, N., Kawamura, S., Nakamura, T.: Phys. Rev. Lett. 87, 221103 (2001) [astro-ph/0108011]CrossRefPubMedADSGoogle Scholar
  5. 5.
    Knop, R.A. et al.: Astrophys. J. 598, 102 (2003) [astro-ph/0309368]CrossRefADSGoogle Scholar
  6. 6.
    Tonry, J.L. et al.: Astrophys. J. 594, 1 (2003) [astro-ph/0305008.]CrossRefADSGoogle Scholar
  7. 7.
    Lee, A.T. et al.: Astrophys. J. 561, L1 (2001) [astro-ph/0104459]CrossRefADSGoogle Scholar
  8. 8.
    Stompor, R. et al.: Astrophys. J. 561, L7 (2001) [astro-ph/0105062]CrossRefADSGoogle Scholar
  9. 9.
    Halverson, N.W. et al.: Astrophys. J. 568, 8 (2002) [astro-ph/0104489]CrossRefADSGoogle Scholar
  10. 10.
    Netterfield, C.B. et al.: Astrophys. J. 571, 604 (2002) [astro-ph/0104460]CrossRefADSGoogle Scholar
  11. 11.
    Pryke, C. et al.: Astrophys. J. 568, 46 (2002) [astro-ph/0104490]CrossRefADSGoogle Scholar
  12. 12.
    Spergel, D.N. et al.: Astrophys. J. Suppl. 148, 175 (2003) [astro-ph/0302209]CrossRefADSGoogle Scholar
  13. 13.
    Sievers, J.L. et al.: Astrophys. J. 591, 599 (2003) [astro-ph/0205387]CrossRefADSGoogle Scholar
  14. 14.
    Peebles, P.J.E., Ratra, B.: Rev. Mod. Phys. 75, 559 (2003) [astro-ph/0207347]CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    Padmanabhan, T.: Phys. Rept. 380, 235 (2003) [hep-th/0212290]CrossRefMATHADSMathSciNetGoogle Scholar
  16. 16.
    Zlatev, I., Wang, L., Steinhardt, P.J.: Phys. Rev. Lett. 82, 896 (1999) [astro-ph/9807002]CrossRefADSGoogle Scholar
  17. 17.
    Armendariz, C., Mukhanov, V., Steinhardt, P.J.: Phys. Rev. Lett. 85, 4438 (2000) [astro-ph/0004134]CrossRefPubMedADSGoogle Scholar
  18. 18.
    Caldwell, R.R., Dave, R., Steinhardt, P.J.: Phys. Rev. Lett. 80, 1582 (1998) [astro-ph/9708069]CrossRefADSGoogle Scholar
  19. 19.
    Deustua, S.E., Caldwell, R., Garnavich, P., Hui, L., Refregier, A.: Cosmological parameters, dark energy and large scale structure. [astro-ph/0207293]Google Scholar
  20. 20.
    Padmanabhan, T.: Cosmic inventory of energy densities: issues and concerns. IUCAA preprint 59/2001; [gr-qc/0112068]Google Scholar
  21. 21.
    Caldwell, R.R., Kamionkowski, M., Weinberg, N.N.: Phys. Rev. Lett. 91, 071301 (2003) [astro-ph/0302506]CrossRefPubMedADSGoogle Scholar
  22. 22.
    Caldwell, R.R.: Phys. Lett. B545, 23 (2002) [astro-ph/9908168]ADSGoogle Scholar
  23. 23.
    Nojiri, S., Odintsov, S.D.: Phys. Lett. B562, 147 (2003), hep-th/0303117; Phys. Rev. D68, 123512, (2003) [hep-th/0307288]Google Scholar
  24. 24.
    Stefancic, H.: Phys. Lett. B586, 5 (2004) [astro-ph/0310904] Eur. Phys. J., C36, 523 (2004). [astro-ph/0312484]Google Scholar
  25. 25.
    Carroll, S.M., Duvvuri, V., Trodden, M., Turner, M.S.: Phys. Rev, D70, 043528 (2004) [astro-ph/0306438]ADSGoogle Scholar
  26. 26.
    Dvali, G., Turner, M.S.: Dark energy as a modification of the friedmann equation. [astro-ph/0301510]Google Scholar
  27. 27.
    Bayin, S.: Int. J. Mod. Phys. D11, 1523 (2002) [astro-ph/0211097]ADSMathSciNetGoogle Scholar
  28. 28.
    Mota, D.F., Barrow, J.D.: Mon. Not. Roy. Astron. Soc, 349 281 (2004) [astro-ph/0309273] Phys. Lett. B581, 141 (2004) [astro-ph/0306047]Google Scholar
  29. 29.
    Gong, Y., Duan, C.-K.: Class. Quant. Grav, 21, 3655 (2004) [gr-qc/0311060]CrossRefMATHADSGoogle Scholar
  30. 30.
    Capozziello, S., Carloni, S., Troisi, A.: Recent Research Developments in Astronomy and Astrophysics-RSP/AA/21-2003. [astro-ph/0303041]Google Scholar
  31. 31.
    Carroll, S.M., Duvvuri, V., Trodden, M., Turner, M.S.: Phys. Rev, D70 043528 (2004) [astro-ph/0306438]Google Scholar
  32. 32.
    Dolgov, A.D., Kawasaki, M.: Phys. Lett, B573, 1 (2003) [astro-ph/0307285]ADSGoogle Scholar
  33. 33.
    Easson, D.A.: Cosmic Acceleration and Modified Gravitational Models, [astro-ph/0411209]Google Scholar
  34. 34.
    Lue, A., Starkman, G.: Phys. Rev. D67. 064002 (2003) [astro-ph/0212083]ADSGoogle Scholar
  35. 35.
    Deffayet, C., Dvali, G., Gabadadze, G.: Phys. Rev. D65 044023 (2002) [astro-ph/0105068]Google Scholar
  36. 36.
    Deffayet, C., Landau, S.J., Raux, J., Zaldarriaga, M., Astier, P.: Phys. Rev. D66, 024019 (2002) [astro-ph/0201164]ADSGoogle Scholar
  37. 37.
    Gorini, V., Kamenshchik, A., Moschella, U.: Phys. Rev. D67 063509 (2003) [astro-ph/020939]ADSGoogle Scholar
  38. 38.
    Neves, R., Vaz, C.: Phys. Rev. D68, 024007, (2003) [hep-th/0302030] Phys. Lett. B568, 153 (2003) [hep-th/0304266]Google Scholar
  39. 39.
    Bento, M.C., Bertolami, O., Sen, A.A.: Phys. Lett. B575, 172 (2003), [astro-ph/0303538] Gen.Rel.Grav. 35, 2063 (2003), [gr-qc/0305086] Phys. Rev. D66, 043507 (2002) [gr-qc/0202064]Google Scholar
  40. 40.
    Freese, K., Lewis, M.: Phys. Lett. B540 1 (2002) [astro-ph/0201229]ADSMathSciNetGoogle Scholar
  41. 41.
    Gondolo, P., Freese, K.: Phys. Rev. D68, 063509 (2003) [hep-ph/0209322]ADSGoogle Scholar
  42. 42.
    Vishwakarma, R.G.: In Quest of a True Model of the Universe. astro-ph/0404371. Has received Honorable Mention in the essay competition 2004 sponsored by the Gravity Research Foundation.Google Scholar
  43. 43.
    Vishwakarma, R.G.: Mon. Not. Roy. Astron. Soc. 345, 545 (2003) [astro-ph/0302357]CrossRefADSGoogle Scholar
  44. 44.
    Vishwakarma R.G., Singh, P.: Class. Quant. Grav. 20, 2033 (2003) [astro-ph/0211285]CrossRefMATHADSMathSciNetGoogle Scholar
  45. 45.
    Shiromizu, T., Maeda, K., Sasaki, M.: Phys. Rev. D62, 02412 (2000) [gr-qc/9910076]Google Scholar
  46. 46.
    Maartens, R.: Geometry and dynamics of the brane-world. Reference Frames and Gravitomagnetism, (World Sci., 2001), p. 93–119, Pascual-Sanchez J. et al. ed. [gr-qc/0101059]Google Scholar
  47. 47.
    Binetruy, P., Deffayet, C., Ellwanger, U., Langlois, D.: Phys. Lett. B477 285 (2000) [hep-th/9910219]ADSGoogle Scholar
  48. 48.
    Ponce de Leon, J.: Mod. Phys. Lett. A17, 2425 (2002) [gr-qc/0207001]ADSMathSciNetGoogle Scholar
  49. 49.
    Ponce de Leon, J.: Class. Quant. Grav. 20, 5321 (2003) [gr-qc/0305041]CrossRefMATHADSMathSciNetGoogle Scholar
  50. 50.
    Ponce de Leon, J.: Accelerated expansion from braneworld models with variable vacuum energy. To appear in GRG [gr-qc/0401026]Google Scholar
  51. 51.
    Huterer, D., Turner, M.S.: Phys. Rev. D60, 081301 (1999) [astro-ph/9808133]ADSGoogle Scholar
  52. 52.
    Nakamura, T., Chiba, T.: Mon. Not. Roy. Astron. Soc. 306, 696 (1999) [astro-ph/9810447]CrossRefADSGoogle Scholar
  53. 53.
    Gerke, B.F., Efstathiou, G.: Mon. Not. Roy. Astron. Soc. 335, 33 (2002) [astro-ph/0201336]CrossRefADSGoogle Scholar
  54. 54.
    de Bernardis, P.: et al. Nature 404, 955 (2000)Google Scholar
  55. 55.
    Uzan, J.P.: Rev. Mod. Phys. 75, 403 (2003) [hep-ph/0205340]CrossRefADSMathSciNetGoogle Scholar
  56. 56.
    Riess, A.G.: et al. Astrophys. J. 560, 49 (2001) [astro-ph/0104455]CrossRefADSGoogle Scholar
  57. 57.
    Turner, M.S., Riess, A.: Do SNe Ia Provide Direct Evidence for Past Deceleration of the Universe? [astro-ph/0106051]Google Scholar
  58. 58.
    Bayin, S.: Missing Mass, Dark Energy and the Acceleration of the Universe. Is Acceleration Here to Stay?., astro-ph/0410710.Google Scholar
  59. 59.
    Alcaniz, J.S., Lima, J.A.S.: Astrophys. J. 550, L133 (2001) [astro-ph/0101544]CrossRefADSGoogle Scholar
  60. 60.
    Riess, A.G.: et al. Astrophys. J. 560, 49 (2001) [astro-ph/0104455]CrossRefADSGoogle Scholar
  61. 61.
    Ponce de Leon, J.: Gen. Rel. Grav, 36, 923 (2004) [gr-qc/0212058]CrossRefMATHADSMathSciNetGoogle Scholar
  62. 62.
    Ponce de Leon, J.: Int. J. Mod. Phys. D12, 757 (2003) [gr-qc/0209013]ADSMathSciNetGoogle Scholar
  63. 63.
    Ponce de Leon, J.: Gen. Rel. Grav, 36, 1335 (2004) [gr-qc/0310078]CrossRefMATHADSMathSciNetGoogle Scholar
  64. 64.
    Ponce de Leon, J.: Gen. Rel. Grav, 35, 1365 (2003) [gr-qc/0207108]CrossRefMATHADSMathSciNetGoogle Scholar
  65. 65.
    Melnikov, V.N., Ivashchuk, V.D.: Problems of G and multidimensional models. Report-no: IGC-PFUR-01/2002 [gr-qc/0208021]Google Scholar
  66. 66.
    Melnikov, V.N.: Gravity as a key problem of the millennium In: Proc. 2000 NASA/JPL Conference on Fundamental Physics in Microgravity, CD-version, NASA Document D-21522, 4.1-4.7, (Solvang, CA, USA) (2001) [gr-qc/0007067]Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Department of Physics, Laboratory of Theoretical PhysicsUniversity of Puerto RicoRio PiedrasUSA

Personalised recommendations