Advertisement

General Relativity and Gravitation

, Volume 38, Issue 1, pp 15–22 | Cite as

The physical meaning of the “boost-rotation symmetric” solutions within the general interpretation of Einstein's theory of gravitation

  • Salvatore Antoci
  • Dierck-Ekkehard Liebscher
  • Luigi Mihich
Research Article

Abstract

The answer to the question, what physical meaning should be attributed to the so-called boost-rotation symmetric exact solutions to the field equations of general relativity, is provided within the general interpretation scheme for the “theories of relativity,” based on group theoretical arguments, and set forth by Erich Kretschmann already in the year 1917.

Keywords

Manifold World Line Timelike Killing Vector Asymptotic Group Symmetry Weyl Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Einstein, A.: Sitzungsber. Preuss. Akad. Wiss., Phys. Math. Kl., 844 (1915)Google Scholar
  2. 2.
    Hilbert, D.: Nachr. Ges. Wiss. Göttingen, Math. Phys. Kl., 395 (1915)Google Scholar
  3. 3.
    Ricci, G., Levi-Civita, T.: Math. Ann. 54, 125 (1900)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Kretschmann, E.: Ann. d. Phys. 48, 907, 943 (1915)Google Scholar
  5. 5.
    Kretschmann, E.: Ann. d. Phys. 53, 575 (1917)ADSGoogle Scholar
  6. 6.
    Frank, Ph.: Jahrbuch Fortschr. Math. 46, 1292 (1917)Google Scholar
  7. 7.
    Einstein, A.: Ann. d. Phys. 49, 769 (1916)CrossRefADSGoogle Scholar
  8. 8.
    Einstein, A.: Ann. d. Phys. 55, 241 (1918)CrossRefADSGoogle Scholar
  9. 9.
    Bondi, H.: Rev. Mod. Phys. 29, 423 (1957)CrossRefMATHADSMathSciNetGoogle Scholar
  10. 10.
    Bonnor, W.B., Swaminarayan, N.S.: Zeits. f. Phys. 177, 240 (1964)CrossRefMATHADSMathSciNetGoogle Scholar
  11. 11.
    Israel, W., Khan, K.A.: Nuovo. Cim. 33, 331 (1964)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Bonnor, W.B.: Wiss. Zeitschr. Univ. Jena (Math-Nat. Reihe) 15, 71 (1966)Google Scholar
  13. 13.
    Bičák, J.: Proc Roy. Soc. A 302, 201 (1968)ADSCrossRefGoogle Scholar
  14. 14.
    Bičák, J., Hoenselaers, C., Schmidt, B.G.: Proc. Roy. Soc. Lond. A 390, 397, 411(1983)Google Scholar
  15. 15.
    Bičák, J., Schmidt, B.G.: J. Math. Phys. 25, 600 (1984)CrossRefADSMathSciNetGoogle Scholar
  16. 16.
    Bonnor, W.B.: Gen. Rel. Grav. 15, 535 (1983)CrossRefMATHADSMathSciNetGoogle Scholar
  17. 17.
    Bonnor, W.B.: Gen. Rel. Grav. 20, 607 (1988)CrossRefADSMathSciNetGoogle Scholar
  18. 18.
    Bičák, J., Schmidt, B.G.: Phys. Rev. D 40, 1827 (1989)CrossRefADSMathSciNetGoogle Scholar
  19. 19.
    Stephani, H., Kramer, D., MacCallum, M., Hoenselaers, C., Herlt, E.: Exact solutions of Einstein's field equations. Cambridge Monographs on Mathematical Physics, 2nd ed. Cambridge Univ. Press (2003)Google Scholar
  20. 20.
    Weyl, H.: Ann. Phys. (Leipzig) 54, 117 (1917)ADSGoogle Scholar
  21. 21.
    Levi-Civita, T.: Rend. Acc. dei Lincei, 28, 3 (1919)Google Scholar
  22. 22.
    Schwarzschild, K.: Sitzungsber. Preuss. Akad. Wiss., Phys. Math. Kl., 189 (1916)Google Scholar
  23. 23.
    Hilbert, D.: Nachr. Ges. Wiss. Göttingen, Math. Phys. Kl., 53 (1917)Google Scholar
  24. 24.
    Lichnerowicz, A.: Théories relativistes de la gravitation et de l'électro-magnétisme, Masson, Paris. (1955)Google Scholar
  25. 25.
    Synge, J.L.: Proc. R. Irish Acad. 53A, 83 (1950)MathSciNetGoogle Scholar
  26. 26.
    Kruskal, M.D.: Phys. Rev. 119, 1743 (1960)CrossRefMATHADSMathSciNetGoogle Scholar
  27. 27.
    Szekeres, G.: Publ. Math. Debrecen 7, 285 (1960)MATHMathSciNetGoogle Scholar
  28. 28.
    Weyl, H.: Ann. d. Phys. 59, 185 (1919)CrossRefADSGoogle Scholar
  29. 29.
    Bach, R., Weyl, H.: Math. Zeitschrift 13, 134 (1922)CrossRefGoogle Scholar
  30. 30.
    Beck, G.: Zeitschr. f. Phys. 33, 713 (1925)CrossRefADSGoogle Scholar
  31. 31.
    Antoci, S., Liebscher, D.-E.: Astron. Nachr. 322, 137 (2001) http://arXiv.org/abs/gr-qc/0102084
  32. 32.
    Antoci, S., Liebscher, D.-E., Mihich, L.: Astron. Nachr. 324, 485 (2003) http://arxiv.org/abs/gr-qc/0107007.

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Salvatore Antoci
    • 1
  • Dierck-Ekkehard Liebscher
    • 2
  • Luigi Mihich
    • 3
  1. 1.Dipartimento di Fisica “A. Volta” and CNRPaviaItaly
  2. 2.Astrophysikalisches Institut PotsdamPotsdamGermany
  3. 3.Dipartimento di Fisica “A. Volta”PaviaItaly

Personalised recommendations