General Relativity and Gravitation

, Volume 37, Issue 12, pp 1985–1993 | Cite as

On null isotropy in spacetimes

  • Fazilet Erkekoglu
Research Article


Null isotropy in a spacetime is defined. The relation of null isotropy to the constant curvature and infinitesimal spatial isotropy is investigated. The influence of null isotropy on conjugate points along null geodesics and curvature singularities is investigated.


Spacetime Instantaneous observer Stress-energy tensor Perfect fluid Einstein equation Jacobi operator Weyl operator Null isotropic Infinitesimally spatially isotropic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beem, J.K., Ehrlich, P.E.: Global Lorentzian Geometry, Marcel Decker, New York (1981)MATHGoogle Scholar
  2. 2.
    Harris, S.G.: A Characterization of Robertson-Walker Spaces by Null Sectional Curvature, Gen. Rel. Grav. 17, 493 (1985)CrossRefMATHADSGoogle Scholar
  3. 3.
    Garcia-Rio, E., Kupeli, D.N.: Null and Infinitesimal Isotropy in Semi-Riemannian Geometry, J. Geom. Phys. 13, 207 (1994)CrossRefMATHADSMathSciNetGoogle Scholar
  4. 4.
    Garcia-Rio, E., Kupeli, D.N.: A local characterization of schwarzschild and reisner metrics. Gen. Rel. Grav. 26(12), 1233 (1994)CrossRefMATHADSMathSciNetGoogle Scholar
  5. 5.
    Garcia-Rio, E., Kupeli, D.N., Vazquez-Lorenzo, R.: The Osserman Condition in Semi-Riemannian Geometry, Springer-Verlag, New York (2001)Google Scholar
  6. 6.
    Karcher, H.: Infinitesimale Characterisierung von Friedman-Universen, Arch. Mat. 38, 58 (1982)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Koch-sen, L.: Infinitesimal Null Isotropy and Robertson-Walker Metrics, J. Math. Phys. 26, 407 (1985)CrossRefMATHADSMathSciNetGoogle Scholar
  8. 8.
    Kupeli, D.N.: On existence and comparison of conjugate points in Riemannian and Lorentzian geometry. Math. Ann. 276, 67 (1986)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Sachs, R.K., Wu, H.: General Relativity for Mathematicians, Springer-Verlag, New York (1977)MATHGoogle Scholar
  10. 10.
    Tipler, F.J., Clarke, C.J.S., Ellis, G.F.R.: Singularities and Horizons in General Relativity and Gravitation. Springer-Verlag, New York (1977)Google Scholar
  11. 11.
    Tipler, F.J.: Genaral Relativity and Conjugate Ordinary Differential Equations, J. Diff. Eq., 30(2), 165 (1978)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Tipler, F.J.: Singularities in Conformally Flat Spacetimes, Phys. Let. A 64(1), 8 (1977)CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Department of MathematicsHacettepe UniversityAnkaraTurkey

Personalised recommendations