General Relativity and Gravitation

, Volume 37, Issue 12, pp 1933–1945 | Cite as

Nonrotating cosmic strings interacting with gravitational waves in Einstein-Maxwell-dilaton gravity

  • Stoytcho S. Yazadjiev
Research Article


We present methods for the construction of exact diagonal cylindrically symmetric solutions in a four dimensional low energy limit of string theory, the Einstein-Maxwell-dilaton gravity. The methods allow us to generate exact string backgrounds from known solutions to the equations of Einstein or Einstein gravity coupled to a massless scalar field. We also give and analyze explicit examples of such solutions. It is shown that they are free of curvature singularities,(quasi)regular on the axis of symmetry, asymptotically flat and describe nonrotating cosmic strings interacting with gravitational, dilaton and electromagnetic waves.


EMD gravity Exact solutions Cosmic strings Gravitational Dilaton-electromagnetic waves 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Vilenkin, A.: Cosmic Strings and Domain Walls. Phys. Rep. 121, 263 (1985)CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    Xanthopoulos, B.: A Rotating Cosmic String. Phys. Lett. B 178, 163 (1986)CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Xanthopoulos, B.: Cylindrical Waves and Cosmic Strings of Petrov Type D. Phys. Rev. D 34, 3608 (1986)CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    Papadopoulos, D., Xanthopoulos, B.: Tomimatsu-Sato Solutions Describe Cosmic Strings Interacting with Gravitational Waves. Phys. Rev. D 41, 2512 (1990)CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Garriga, J., Verdaguer, E.: Cosmic Strings and Einstein-Rosen Soliton Waves. Phys. Rev. D 36, 2250 (1987)CrossRefADSGoogle Scholar
  6. 6.
    Economou, A., Tsoubelis, D.: Rotating Cosmic Strings and Gravitational Soliton Waves. Phys. Rev. D 38, 498 (1988)CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Xanthopoulos, B.: Cosmic Strings Coupled With Gravitational and Electromagnetic Waves. Phys. Rev. D 35, 3713 (1987)CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    Santos, C.: Cosmic Strings in Axionic-Dilatonic Gravity. Class. Quant. Grav. 18, 1835 (2001)CrossRefMATHADSGoogle Scholar
  9. 9.
    Gurtug, O., Sakalli, I.: Cosmic Strings Coupled with a Massless Scalar Field. Int. J. Theor. Phys. 42, 1875 (2003)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Gibbons, G., Maeda, K.: Black Holes and Membranes in Higher Dimensional Theories with Dilaton Fields. Nucl. Phys. B 298, 741 (1988)CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    Garfinkle, D., Horowitz, G., Strominger, A.: Charged Black Holes in String Theory. Phys. Rev. D 43, 3140 (1991)CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    Yazadjiev S.: Exact inhomogeneous Einstein-Maxwell-Dilaton cosmologies. Phys. Rev. D 63, 063510 (2001)CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    Thorne, K.: Energy of Infinitely Long, Cylindrically Symmetric Systems in General Relativity. Phys. Rev. 138, B251 (1965)CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Department of Theoretical Physics, Faculty of PhysicsSofia UniversitySofiaBulgaria

Personalised recommendations