Advertisement

General Relativity and Gravitation

, Volume 37, Issue 11, pp 1833–1844 | Cite as

Exact solutions of the Einstein-Maxwell equations with closed timelike curves

  • W. B. Bonnor
  • B. R. Steadman
Research Article

Abstract

We examine two electrovac spacetimes, the Kerr-Newman solution and another due to Perjes, which represent single charged, rotating, magnetic objects. Both contain regions with closed timelike curves (CTC), but these regions would be covered by the sources in any physical realisation of the spacetimes, so the CTC would not be detectable. We then study a stationary solution referring to two charged, rotating, magnetic objects. In general there is a region of CTC between the objects no matter how far apart they are. In this case the region would not be covered by the sources, and CTC would be detectable in principle.

Keywords

Einstein-Maxwell equation Spinning charges 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bičák, J., Pravda, V.: Phys. Rev. D 60, 044004 (1999)CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    Pravda, V., Pravdová, A.: Preprint gr-qc/0201025 (2002)Google Scholar
  3. 3.
    Bonnor, W.B.: Class. Quantum Grav. 19, 5951 (2002)CrossRefMATHADSMathSciNetGoogle Scholar
  4. 4.
    Bonnor W.B., Steadman, B.R.: Class. Quantum Grav. 21, 2723 (2004)CrossRefMATHADSMathSciNetGoogle Scholar
  5. 5.
    Bonnor, W.B., Ward, J.P.: Commun. Math. Phys. 28, 323 (1972)CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    Perjes, Z.: Phys. Rev. Lett. 27, 1668 (1971)CrossRefADSGoogle Scholar
  7. 7.
    Israel, W., Wilson, G.A.: J. Math. Phys. 13, 865 (1972)CrossRefADSGoogle Scholar
  8. 8.
    Papapetrou, A.: Proc. Roy. Irish Acad. 51, 191 (1947)MathSciNetGoogle Scholar
  9. 9.
    Majumdar, S.D.: Phys. Rev. 72, 390 (1947)CrossRefADSGoogle Scholar
  10. 10.
    Katz, J., Bičák, J., Lynden-Bell, D.: Class. Quantum Grav. 16, 4023 (1999)CrossRefMATHADSGoogle Scholar
  11. 11.
    Bonnor, W.B.: Class. Quantum Grav. 19, 149 (2002)CrossRefMATHADSMathSciNetGoogle Scholar
  12. 12.
    Cooperstock, F.I., Tieu, S.: Preprint gr-qc/0405114 (2004)Google Scholar
  13. 13.
    Van den Bergh, N., Wils, P.: Class. Quantum Grav. 2, 229 (1985)CrossRefMATHADSMathSciNetGoogle Scholar
  14. 14.
    Synge, J.L.: Relativity: the General Theory (Amsterdam: North-Holland) page 309 (1960)MATHGoogle Scholar
  15. 15.
    Bonnor, W.B.: Class. Quantum Grav. 18, 1381 (2001)CrossRefMATHADSMathSciNetGoogle Scholar
  16. 16.
    Bonnor, W.B.: Class. Quantum Grav. 18, 2853 (2001)CrossRefMATHADSMathSciNetGoogle Scholar
  17. 17.
    Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation (San Fransisco: Freeman) p 878 (1973)Google Scholar
  18. 18.
    Glendenning, N.K.: Compact Stars (New York: Springer) p 71 (1997)Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Queen MaryUniversity of LondonLondonGreat Britain
  2. 2.HitchinGreat Britain

Personalised recommendations