Advertisement

General Relativity and Gravitation

, Volume 37, Issue 7, pp 1297–1303 | Cite as

Comment on Yukawa couplings and cosmological problems of intersecting brane models

  • Tomohiro Matsuda
Letter

Abstract

In string theory, stabilization of moduli fields and their cosmological implications have been discussed by many authors. In this paper, we consider the relative positions of three intersecting branes. Surprisingly, there had been no phenomenological and cosmological argument on the mechanism that stabilizes the corresponding parameter. We show that the area of the triangle is not a free parameter. The effective potential is generated from loop corrections in the low energy effective Lagrangian, where supersymmetry is expected to be broken. The stabilization of the area of such triangles will determine the Yukawa couplings that have been considered as the free parameters of the intersecting brane models. The stabilization puts a constraint on the model, which is different from the other requirements that have been discussed before. We also discuss cosmological problems and then show an idea that may solve the problem.

Keywords

Brane cosmology Brane phenomenology Stability of brane world 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Antoniadis, I., A-Hamed, N., Dimopoulos, S., Dvali, G.R.: Phys. Lett. B 436, 257 (1998); Antoniadis, I.: Phys. Lett. B 246, 377 (1990); A-Hamed, N., Dimopoulos, S., Dvali, G.R.: Phys. Lett. B 429, 263 (1998)Google Scholar
  2. 2.
    Douglas, M.R., Moore, G.W.: D-BRANES, QUIVERS, AND ALE INSTANTONS. [hep-th/9603167] Douglas, M.R., Greene, B.R., Morrison, D.R.: Nucl. Phys. B 506, 84–106 (1997)Google Scholar
  3. 3.
    Berkooz, M., Douglas, M.R., Leigh, R.G.: Nucl. Phys. B 480, 265 (1996)Google Scholar
  4. 4.
    Aldazabal, G., Franco, S., Ibanez, L.E., Rabadan, R., Uranga, A.M.: JHEP 0102, 047 (2001)Google Scholar
  5. 5.
    Blumenhagen, R., Lust, D., Stieberger, S.: JHEP 0307, 036 (2003); Klebanov, I.R., Witten, E.: Nucl. Phys. B 664, 3–20 (2003); Cvetic, M., Langacker, P., Wang, J.: Nucl. Phys. B 642, 139 (2002) [hep-th/0303208]; Cvetic, M., Papadimitriou, I.: Phys. Rev. D 67, 126006 (2003); Abel, S.A., Owen, A.W.: Nucl. Phys. B 663, 197–214 (2003); Bailin, D., Kraniotis, G.V., Love, A.: Phys. Lett. B 547, 43 (2002); Doran, C.F., Faux, M.: JHEP 0208, 024 (2002); Kokorelis, C.: JHEP 0208, 036 (2002), JHEP 0209, 029 (2002); Cremades, D., Ibanez, L.E., Marchesano, F.: Nucl. Phys. B 643, 93 (2002)Google Scholar
  6. 6.
    Arkani-Hamed, N., Dimopoulos, S., Kaloper, N., March-Russell, J.: Nucl. Phys. B 567, 189 (2000); Mohapatra, R.N. Perez-Lorenzana, A., de, C.A., Pires, S.: Phys. Rev. D 62, 105030 (2000); Green, A.M., Mazumdar, A.: Phys. Rev. D 65, 105022 (2002); Matsuda, T.: Phys. Rev. D 66, 107301 (2002); Lyth, D.H.: Phys. Lett. B 448, 191 (1999); Phys. Lett. B 466, 85 (1999); Kanti, P., Olive, K.A.: Phys. Lett. B 464, 192 (1999); Phys. Rev. D 60, 043502 (1999)Google Scholar
  7. 7.
    Matsuda, T.: Phys. Rev. D 67, 083519 (2003); JCAP06 007 (2003); F-term, D-term and hybrid brane inflation. Thermal hybrid inflation in brane world. [hep-ph/0302253] [hep-ph/0302078]Google Scholar
  8. 8.
    Dvali, G.R., Gabadadze, G.: Phys. Lett. B 460, 47 (1999); Matsuda, T.: Phys. Rev. D 66, 023508 (2002); Phys. Rev. D 65, 107302 (2002); Phys. Rev. D 64, 083512 (2001); J. Phys. G 27, L103 (2001); Masiero, A., Peloso, M., Sorbo, L., Tabbash, R.: Phys. Rev. D 62, 063515 (2000); Pilaftsis, A.: Phys. Rev. D 60, 105023 (1999); Allahverdi, R., Enqvist, K., Mazumdar, A., Lorenzana, A.P.: Nucl. Phys. B 618, 377 (2001); Davidson, S., Losada, M., Riotto, A.: Phys. Rev. Lett. 84, 4284 (2000)Google Scholar
  9. 9.
    Mazumdar, A.: Nucl. Phys. B 597, 561 (2001); Phys. Rev. D 64, 027304 (2001); Mazumdar, A., Perez-Lorenzana, A.: Phys. Rev. D 65, 107301 (2002); Allahverdi, R., Enqvist, K., Mazumdar, A., Perez-Lorenzana, A.: Nucl. Phys. B 618, 277 (2001); Matsuda, T.: Phys. Rev. D 65, 103502 (2002)Google Scholar
  10. 10.
    Matsuda, T.: Phys. Rev. D 65, 103501 (2002); Phys. Rev. D 67, 127302 (2003)Google Scholar
  11. 11.
    Matsuda, T.: Curvaton paradigm can accommodate multiple low inflation scales. [hep-ph/0312058]Google Scholar
  12. 12.
    Matsuda, T.: Phys. Lett. B 423, 35 (1998)Google Scholar
  13. 13.
    Cremades, D., Ibanez, L.E., Marchesano, F.: JHEP 0307, 038 (2003)Google Scholar
  14. 14.
    Abel, S.A., Sarkar, S., White, P.L.: Nucl. Phys. B 454, 663 (1995)Google Scholar
  15. 15.
    Kolb, E.W., Turner, M.S.: The early Universe. Addison-Wesley Publishing CompanyGoogle Scholar
  16. 16.
    Vilenkin, A.: Phys. Rev. D 23, 852 (1981)Google Scholar
  17. 17.
    Matsuda, T.: Phys. Lett. B 423, 35 (1998); Phys. Lett. B 486, 300 (2000)Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Laboratory of PhysicsSaitama Institute of TechnologySaitamaJapan

Personalised recommendations