Advertisement

General Relativity and Gravitation

, Volume 37, Issue 7, pp 1177–1189 | Cite as

Compact anisotropic spheres with prescribed energy density

  • M. Chaisi
  • S. D. Maharaj
Research Article

Abstract

Abstract New exact interior solutions to the Einstein field equations for anisotropic spheres are found. We utilise a procedure that necessitates a choice for the energy density and the radial pressure. This class contains the constant density model of Maharaj and Maartens (Gen. Rel. Grav. 21, 899–905 (1989)), and the variable density model of Gokhroo and Mehra (Gen. Rel. Grav. 26, 75–84 (1994)), as special cases. These anisotropic spheres match smoothly to the Schwarzschild exterior and gravitational potentials are well behaved in the interior. A graphical analysis of the matter variables is performed which points to a physically reasonable matter distribution.

Keywords

Anisotropic relativistic stars Compact spheres 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Binney, J., Tremaine, S.: Galactic Dynamics. Princeton University Press, Princeton, NJ (1987)Google Scholar
  2. 2.
    Bondi, H.: Mon. Not. R. Astr. Soc. 259, 365–368 (1992)Google Scholar
  3. 3.
    Bowers, R.L., Liang, E.P.T.: Astrophys. J. 188, 657–665 (1974)Google Scholar
  4. 4.
    Buchdahl, H.A.: Phys. Rev. 116, 1027–1034 (1959)Google Scholar
  5. 5.
    Cuddeford, P.: Mon. Not. R. Astr. Soc. 253, 414–426 (1991)Google Scholar
  6. 6.
    Dev, K., Gleiser, M.: Gen. Rel. Grav. 34, 1793–1818 (2002)Google Scholar
  7. 7.
    Dev, K., Gleiser, M.: Gen. Rel. Grav. 35, 1435–1457 (2003)Google Scholar
  8. 8.
    Gokhroo, M.K., Mehra, A.L.: Gen. Rel. Grav. 26, 75–84 (1994)Google Scholar
  9. 9.
    Hansraj, S.: Exact solutions and conformal transformations in general relativity. Ph.D thesis, University of Natal (1999)Google Scholar
  10. 10.
    Herrera, L., Ruggeri, G.J., Witten, L.: Astrophys. J. 234, 1094–1099 (1979)Google Scholar
  11. 11.
    Herrera, L., Santos, N.O.: Phys. Rep. 286, 53–130 (1997)Google Scholar
  12. 12.
    Ivanov, B.V.: Phys. Rev. D 65, 10411 (2002)Google Scholar
  13. 13.
    Maharaj, S.D., Maartens, R.: J. Math. Phys. 27, 2514–2519 (1986)Google Scholar
  14. 14.
    Maharaj, S.D., Maartens, R.: Gen. Rel. Grav. 21, 899–905 (1989)Google Scholar
  15. 15.
    Mak, M.K., Harko, T.: Chin. J. Astron. Astrophys. 2, 248–259 (2002)Google Scholar
  16. 16.
    Mak, M.K., Harko, T.: Proc. Roy. Soc. Lond. A459, 393–408 (2003)Google Scholar
  17. 17.
    Michie, R.W.: Mon. Not. R. Astr. Soc. 125, 127–139 (1963)Google Scholar
  18. 18.
    Misner, C.W., Zapolsky, H.S.: Phys. Rev. Lett. 12, 635–637 (1964)Google Scholar
  19. 19.
    Petri, M.: (2003) [gr-qc/0306063]Google Scholar
  20. 20.
    Rago, H.: Astrophys. Sp. Sci. 183, 333–338 (1991)Google Scholar
  21. 21.
    Saslaw, W.C., Maharaj, S.D., Dadhich, N.: Astrophys. J. 471, 571–574 (1996)Google Scholar
  22. 22.
    Sharma, R., Mukherjee, S.: Mod. Phys. Lett. A. 17, 2535–2544 (2002)Google Scholar
  23. 23.
    Stephani, H.: Relativity: An Introduction to Special and General Relativity. Cambridge University Press (2004)Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Astrophysics and Cosmology Research Unit, School of Mathematical SciencesUniversity of KwaZulu-NatalDurbanSouth Africa
  2. 2.Department of Mathematics & Computer ScienceNational University of LesothoRomaLesotho

Personalised recommendations