General Relativity and Gravitation

, Volume 37, Issue 5, pp 997–1007 | Cite as

Duality in Yang’s theory of gravity

  • Eckehard W. Mielke
  • Alí A. Rincón Maggiolo


The historical route and the current status of a curvature-squared model of gravity, in the affine form proposed by Yang, is briefly reviewed. Due to its inherent scale invariance, it enjoys some advantage for quantization, similarly as internal Yang-Mills fields. However, the exact vacuum solutions with double duality properties exhibit a ‘vacuum degeneracy’. By modifying the duality via a scale breaking term, we demonstrate that only the Einstein equations with induced cosmological constant emerge for the classical background, even when coupled to matter sources.


Curvature squared gravity Affine gravity Cosmology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yang, C.N., Mills, R.L.: Conservation of isotopic spin and isotopic gauge invariance. Phys. Rev. 96, 191 (1954)CrossRefGoogle Scholar
  2. 2.
    Yang, C.N.: Integral formalism for gauge fields. Phys. Rev. Lett. 33, 445–447 (1974)CrossRefGoogle Scholar
  3. 3.
    Mills, R.: Am. J. Phys. 57, 493 (1989)CrossRefGoogle Scholar
  4. 4.
    Mielke, E.W., Hehl, F.W.: Die Entwicklung der Eichtheorien: Margi-na-li-en zu deren Wissenchaftsgeschichte. In: Deppert, W. Hübner, K. Oberschelp A. und Weidemann V. (eds.), Exakte Wissenschaften und Ihre Philosophische Grundlegung–-Vorträ-ge des Internationalen Hermann–Weyl–Kongres-ses, pp. 191–231. Verlag Peter Lang, Frankfurt a. M. Kiel (1988).Google Scholar
  5. 5.
    Schrödinger, E.: Diracsches Elektron im Schwerefeld I. Sitzungsber. Preuss. Akad. Wiss. Phys. Math. Kl. 11, 105 (1932)Google Scholar
  6. 6.
    Mielke, E.W.: Beautiful gauge field equations in Clifforms. Int. J. Theor. Phys. 40, 171–190 (2001)CrossRefGoogle Scholar
  7. 7.
    Weyl, H.: Eine neue Erweiterung der Relativit“atstheorie”, Ann. Phys. (Leipzig) IV. Folge 59, 103 (1919)Google Scholar
  8. 8.
    Stephenson, G.: Nuovo Cimento 9, 263 (1958)Google Scholar
  9. 9.
    Higgs, P.W.: Nuovo Cimento 11, 816 (1959)Google Scholar
  10. 10.
    Kilmister, C.W., Newman, D.L.: Proc. Cambridge Phil. Soc. (Math. Phys. Sci.) 57, 851 (1961)Google Scholar
  11. 11.
    Hehl, F.W., McCrea, J.D., Mielke, E.W., Ne’eman, Y.: Phys. Rept. 258, 1–171 (1995)CrossRefGoogle Scholar
  12. 12.
    Guilfoyle, B.S., Nolan, B.C.: Yang’s gravitational theory. Gen. Relativ. Gravit. 30, 473 (1998)CrossRefGoogle Scholar
  13. 13.
    Weyl, H.: Gravitation and the electron. Proc. Natl. Acad. Sci. 15, 323, Washington (1929)Google Scholar
  14. 14.
    Mielke, E.W.: Ashtekar’s complex variables in general relativity and its teleparallelism equivalent. Ann. Phys. 219, 78–108, N.Y. (1992)CrossRefGoogle Scholar
  15. 15.
    Mielke, E.W.: Chern–Simons solution of the chiral teleparallelism constraints of gravity. Nucl. Phys. B 622, 457–471 (2002)CrossRefGoogle Scholar
  16. 16.
    Hehl, F.W., McCrea, J.D., Mielke, E.W., Ne’eman, Y.: Progress in metric–affine gauge theories of gravity with local scale invariance. Found. Phys. 19, 1075–1100 (1989)Google Scholar
  17. 17.
    Kibble, T.W.B., Stelle, K.S.: Gauge theories of gravity and supergravity. In: H. Ezawa and S. Kamefuchi, (eds.), Progress in Quantum Field Theory, Festschrift for Umezawa, p. 57 Elsevier Science Publications, Amsterdam (1986)Google Scholar
  18. 18.
    Mielke, E.W.: On pseudoparticle solutions in Yang’s theory of gravity. Gen. Rel. Grav. 13, 175–187 (1981)CrossRefGoogle Scholar
  19. 19.
    Thompson, A.H.: Phys. Rev. Lett. 34, 505; 35, 320 (1975)Google Scholar
  20. 20.
    Vassiliev, D.: Pseudoinstantons in metric-affine field theory. Gen. Rel. Grav. 34, 1239 (2002)CrossRefGoogle Scholar
  21. 21.
    Nakamichi, A., Sugamoto, A., Oda, I.: Phys. Rev. D 44, 3835 (1991)CrossRefGoogle Scholar
  22. 22.
    Kreimer, D., Mielke, E.W.: Comment on: Topological invariants, instantons, and the chiral anomaly on spaces with torsion. Phys. Rev. D 63, 0485011–4 (2001)CrossRefGoogle Scholar
  23. 23.
    Sezgin, E., van Nieuwenhuizen, P.: Phys. Rev. D 21, 3269–3280 (1980)CrossRefGoogle Scholar
  24. 24.
    Kuhfuß, R., Nitsch, J.: Gen. Relativ. Gravit. 18, 1207 (1986)CrossRefGoogle Scholar
  25. 25.
    Esser, W.: Exact solutions of the metric-affine gauge theory of gravity. Diploma Thesis, University of Cologne (1996)Google Scholar
  26. 26.
    Vassiliev, D.: Quadratic metric-affine gravity. Annalen Phys. (Leipzig) 14, 231 (2005) [gr-qc/0304028]CrossRefGoogle Scholar
  27. 27.
    Eguchi, T., Gilkey, P.B.: Hanson, A.J: Gravitation, gauge theories and differential geometry. Phys. Rept. 66, 213 (1980)CrossRefGoogle Scholar
  28. 28.
    Schimming, R., Schmidt, H.J.: On the history of fourth order metric theories of gravitation. NTM-Schriftenr. Gesch. Naturw., Techn., Med. (Leipzig) 27, 41 (1990)Google Scholar
  29. 29.
    Mielke, E.W.: Consistent coupling to Dirac fields in teleparallelism: Comment on Metric-affine approach to teleparallel gravity. Phys. Rev. D 69, 128501 (2004)CrossRefGoogle Scholar
  30. 30.
    Mielke, E.W.: J. Math. Phys. 25, 663 (1984)CrossRefGoogle Scholar
  31. 31.
    Zhytnikov, V.V.: J. Math. Phys. 35, 6001–6017 (1994)CrossRefGoogle Scholar
  32. 32.
    Dereli, T., Tucker, R.W.: A broken gauge approach to gravitational mass and charge. JHEP 0203, 041 (2002)CrossRefGoogle Scholar
  33. 33.
    Mielke, E.W.: Fortschr. Phys. 32, 639 (1984)Google Scholar
  34. 34.
    Gu, C.H., Hu, H.S., Li, D.Q., Shen, C.L., Xin, Y.L., Yang, C.N.: Riemannian spaces with local duality and gravitational instantons. Sci. Sin. 21, 475 (1978)Google Scholar
  35. 35.
    Jackiw, R.: Fifty years of Yang-Mills theory and my contribution to it. MIT preprint physics/0403109.Google Scholar
  36. 36.
    MacDowell, S.W., Mansouri, F.: Unified geometric theory of gravity and supergravity. Phys. Rev. Lett. 38, 739 (1977) [Erratum-ibid.] 38, 1376 (1977)Google Scholar
  37. 37.
    Pagels, H.R.: Gravitational gauge fields and the cosmological constant. Phys. Rev. D. 29, 1690 (1984)CrossRefGoogle Scholar
  38. 38.
    Tresguerres, R., Mielke, E.W.: Gravitational Goldstone fields from affine gauge theory. Phys. Rev. D 62, 44004 (2000)CrossRefGoogle Scholar
  39. 39.
    Stelle, K.S.: Phys. Rev. D 16, 953 (1977)CrossRefGoogle Scholar
  40. 40.
    Lee, C. Y., Ne’eman, Y.: Renormalization of gauge affine gravity. Phys. Lett. B 242, 59 (1990)CrossRefGoogle Scholar
  41. 41.
    Hamada, K. j.: On the BRST formulation of diffeomorphism invariant 4D quantum gravity. Resummation and higher order renormalization in 4D quantum gravity. Prog. Theor. Phys. 108, 399 (2002) [arXiv:hep-th/0005063]CrossRefGoogle Scholar
  42. 42.
    Mielke, E.W., Rincón Maggiolo, A.A.: Algebra for a BRST quantization of metric-affine gravity. Gen. Relativ. Gravit. 35, 771–789 (2003)CrossRefGoogle Scholar
  43. 43.
    Ne’eman, Y.: A superconnection for Riemannian gravity as spontaneously broken SL(4, R) gauge theory. Phys. Lett. B. 427, 19 (1998)CrossRefGoogle Scholar
  44. 44.
    Hehl, F.W., Kopczyński, W., McCrea, J.D., Mielke, E.W.: J. Math. Phys. 32, 2169 (1991)CrossRefGoogle Scholar
  45. 45.
    Nieh, H.T., Yan, M.L.: J. Math. Phys. 23, 373–374 (1982)CrossRefGoogle Scholar
  46. 46.
    Brans, C.H.: J. Math. Phys. 15, 1559 (1974); 16, 1008 (1975)Google Scholar
  47. 47.
    Atiyah, M.F, Hitchin, N.J, Singer, I.M.: Proc. R. Soc. (London) A 362, 425 (1978)Google Scholar
  48. 48.
    Lanczos, C.: A remarkable property of the Riemann–Christoffel tensor in four dimensions. Ann. Math. 39, 842 (1938)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Eckehard W. Mielke
    • 1
  • Alí A. Rincón Maggiolo
    • 1
  1. 1.Departamento de FísicaUniversidad Autónoma Metropolitana–IztapalapaMéxico D.F.Mexico

Personalised recommendations