Advertisement

General Relativity and Gravitation

, Volume 37, Issue 4, pp 643–650 | Cite as

Smarr’s formula for black holes with non-linear electrodynamics

  • Nora Bretón
Article

Abstract

It is known that for nonlinear electrodynamics the First Law of Black Hole Mechanics holds, however the Smarr’s formula for the total mass does not. In this contribution we discuss the point and determine the corresponding expressions for the Bardeen black hole solution that represents a nonlinear magnetic monopole. The same is done for the regular black hole solution derived by Ayón–Beato and García [1], showing that in the case that variations of the electric charge are involved, the Smarr’s formula is no longer valid.

Keywords

Black hole Magnetic monopole 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ayón–Beato, E., García, A.: Regular black hole in general relativity coupled to nonlinear electrodynamics. Phys. Rev. Lett. 80, 5056–5059 (1998)CrossRefGoogle Scholar
  2. 2.
    Ashtekar, A., Corichi, A., Sudarsky, D.: Hairy black holes, horizon mass and solitons. Class. Quant. Grav. 18, 919–940 (2001)CrossRefGoogle Scholar
  3. 3.
    Corichi, A., Nucamendi, U., Sudarsky, D.: Einstein-Yand-Mills isolated horizons: phase space, mechanics, hair and conjectures. Phys. Rev. D 62, 044046 (2000)CrossRefGoogle Scholar
  4. 4.
    Wald, R.: The First Law of Black Hole Mechanics. In: College Park 1993, Directions in General Relativity, vol. 1, 358–366. [arXiv: gr-qc/9305022]Google Scholar
  5. 5.
    Heusler, M., Straumann, N.: The First law of black hole physica for a class of nonlinear matter models. Class. Quant. Grav. 10, 1299–1322 (1993)CrossRefGoogle Scholar
  6. 6.
    Rasheed, D.A.: Non-linear electrodynamics: zeroth and first laws of black hole mechanics. [arXiv:hep-th/9702087]Google Scholar
  7. 7.
    Hawking, S.W., Ellis, G.F.R.: The large scale structure of spacetime. Cambridge University Press, Cambridge, UK (1973)Google Scholar
  8. 8.
    Peres, A.: Nonlinear Electrodynamics in General Relativity. Phys. Rev. 122, 273 (1961)CrossRefGoogle Scholar
  9. 8.
    d’Oliveira, H.: Non-linear charged black holes. Class. Quant. Grav. 11, 1469–1482 (1994)CrossRefGoogle Scholar
  10. 8.
    Wiltshire, D.: Black holes in string-generated gravity models. Phys. Rev. D 38, 2445–2456 (1988)Google Scholar
  11. 8.
    Demianski, M.: Static Electromagnetic Geon. Found. Phys. 16, 187–190 (1986)Google Scholar
  12. 9.
    Born, M., Infeld, L.: Foundations of the New Field Theory. Proc. R. Soc. London A 144, 425–451 (1934)Google Scholar
  13. 10.
    Hoffmann, B., Infeld, L.: On the Choice of the Action Function in the New Field Theory. Phys. Rev. 51, 765–773 (1937).Google Scholar
  14. 11.
    Salazar, H., García, A., Plebañski, J.F.: Duality rotations and type d solutions to Einstein equations with nonlinear electromagnetic sources. J. Math. Phys. 28, 2171–2181 (1987)CrossRefGoogle Scholar
  15. 11.
    García, A., Salazar, H., Plebañski, J.F.: Type-D solutions of the Einstein and Born-Infeld nonlinear electrodynamics equations. Nuovo Cimento 84, 65–90 (1984)Google Scholar
  16. 12.
    Bronnikov, K.A., Melnikov, V.N., Shikin, G.N., Staniukowicz, K.P.: Scalar, electyromagnetic, and gravitational fields interaction: Particle-Like Solutions. Ann. Phys. (NY) 118, 84–107 (1979)CrossRefGoogle Scholar
  17. 13.
    Bronnikov, K.A.: Regular magnetic black holes and monopoles from nonlinear electrodynamcs. Phys. Rev. D 63, 044005 (2001)CrossRefGoogle Scholar
  18. 14.
    Ayón-Beato, E., García, A.: Nonsingular charged black hole solution for nonlinear source. Gen. Relaiv. Gravit. 31, 629–633 (1999)CrossRefGoogle Scholar
  19. 14.
    Ayón–Beato, E., García, A.: New regular black hole solution from nonlinear electrodynamics. Phys. Lett. B 464, 25–28 (1999)CrossRefGoogle Scholar
  20. 15.
    Ayón-Beato, E., García, A.: The Bardeen model as a nonlinear magnetic monopole. Phys. Lett. B 493, 149–152 (2000)CrossRefGoogle Scholar
  21. 16.
    Moreno, C., Sarbach, O.: Stability properties of black holes in selfgravitating nonlinear electrodynamics. Phys. Rev. D 67, 024028 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Departamento de FísicaCinvestav-IPND.F.México

Personalised recommendations