Advertisement

General Relativity and Gravitation

, Volume 37, Issue 2, pp 399–406 | Cite as

Conformal anomaly for free scalar propagation on curved bounded manifolds

  • George Tsoupros
Letter

Abstract

The trace anomaly for free propagation in the context of a conformally invariant scalar field theory defined on a curved manifold of positive constant curvature with boundary is evaluated through use of an asymptotic heat kernel expansion. In addition to their direct physical significance the results are also of relevance to the holographic principle and to Quantum Cosmology.

Keywords

Quantum Cosmology Heat kernel Conformal anomaly 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tsoupros, G.: Class. Quantum Gravity 17, 2255–2266 (2000) [e-Print Archive: hep-th/ 0001039]Google Scholar
  2. 2.
    Tsoupros, G.: Class. Quantum Gravity 19, 755–766 (2002) [e-Print Archive:hep-th/ 0107019]Google Scholar
  3. 3.
    Tsoupros, G.: Class. Quantum Gravity 19, 767–782 (2002) [e-Print Archive:hep-th/ 0107021]Google Scholar
  4. 4.
    Tsoupros, G.: Class. Quantum Gravity 20, 2793–2814 (2003) [e-Print Archive:hep-th/ 0304041]Google Scholar
  5. 5.
    Esposito, G., Kamenshchik, A.Y., Pollifrone, G.: Euclidean Quantum Gravity on Manifolds with Boundary. Kluwer Academic Publishers (1997)Google Scholar
  6. 6.
    Birrell, N.D., Davies, P.C.W.: Quantum Fields in Curved Space. Cambridge Monographs in Mathematical Physics (1984)Google Scholar
  7. 7.
    Collins, J.C.: Phys. Rev. Lett. 36, 1518 (1976); Phys. Rev. D 14, 1965 (1976)Google Scholar
  8. 8.
    Drummond, I.T., Shore, G.M.: Phys. Rev. D 19(4), 1134 (1979)Google Scholar
  9. 9.
    Barvinsky, A.O., Solodukhin, S.N.: Nucl. Phys. B 479, 305–318 (1996) [e-Print Archive: gr-qc/9512047]Google Scholar
  10. 10.
    Moss, I.G., Poletti, S.: Phys. Lett. B 333, 326–330 (1994)Google Scholar
  11. 11.
    Hartle, J.B., Hawking, S.W.: Phys. Rev. D 28, 2960–2975 (1983)Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.The School of PhysicsPeking UniversityBeijingPeople’s Republic of China

Personalised recommendations