General Relativity and Gravitation

, Volume 37, Issue 1, pp 237–242 | Cite as

The Petrov type of the BMPV metric

  • Pieter-Jan De Smet


We show that the BMPV metric has Petrov type 22. This means that the Breckenridge–Myers–Peet–Vafa (BMPV) metric is less algebraically special than the five-dimensional Schwarzschild metric, which has Petrov type 22.


Classical theories of gravity Black holes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Breckenridge, J.C., Myers, R.C., Peet, A.W., Vafa, C.: D-branes and spinning black holes. Phys. Lett. B 391, 93 (1997) [hep-th/9602065]Google Scholar
  2. 2.
    Cremmer, E.: Supergravities in five dimensions. In: Hawking, S.W., Roček, M. (eds.) Superspace and Supergravity. Proceedings, Nuffield Workshop, Cambridge, UK (1980)Google Scholar
  3. 3.
    Gauntlett, J.P., Gutowski, J.B., Hull, C.M., Pakis, S., Reall, H.S.: All supersymmetric solutions of minimal supergravity in five dimensions. Class. Quantum Grav. 20, 4587 (2003) [hep-th/0209114]Google Scholar
  4. 4.
    Gauntlett, J.P., Myers, R.C., Townsend, P.K.: Black holes of D $=$ 5 supergravity. Class. Quantum Grav. 16, 1 (1999) [hep-th/9810204]Google Scholar
  5. 5.
    Myers, R.C., Perry, M.J.: Black holes in higher dimensional space-times. Annals Phys. 172, 304 (1986)Google Scholar
  6. 6.
    Penrose, R.,: A spinor approach to general relativity. Annals Phys. 10, 171–201 (1960)Google Scholar
  7. 7.
    Newman, E.T., et al.: Metric of a rotating, charged mass. J. Math. Phys. 6, 918–919 (1965)Google Scholar
  8. 8.
    De Smet, P.J.: Black holes on cylinders are not algebraically special. Class. Quantum Grav. 19, 4877 (2002) [hep-th/0206106]Google Scholar
  9. 9.
    Reboucas, M.J., Santos, J.: Teixeira AFF classification of energy momentum tensors in n > 5 dimensional space-times: a review [gr-qc/0312064]Google Scholar
  10. 10.
    Coley, A., Milson, R., Pravda, V., Pravdova, A.: Classification of the Weyl tensor in higher-dimensions [gr-qc/0401008], Alignment and algebraically special tensors in Lorentzian geometry. Class. Quantum Grav. 21, L35 (2004) [gr-qc/0401010]Google Scholar
  11. 11.
    De Smet, P.J.: The Petrov type of the five-dimensional Myers–Perry metric [gr-qc/0312021]Google Scholar
  12. 12.
    Cvetic, M., Youm, D.: General rotating five dimensional black holes of toroidally compactified heterotic string. Nucl. Phys. B 476, 118 (1996) [hep-th/9603100]Google Scholar
  13. 13.
    Herdeiro, C.A.R.: The Kerr–Newman–Goedel black hole. Class. Quantum Grav. 20, 4891 (2003) [hep-th/0307194]Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.C. N. Yang Institute of Theoretical PhysicsState University of New YorkStony BrookUSA

Personalised recommendations