Skip to main content

Advertisement

Log in

Improvement of Ground Penetrating Radar (GPR) Data Interpretability by an Enhanced Inverse Scattering Strategy

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

This paper is inserted into the framework of inverse scattering with application to Ground Penetrating Radar (GPR) data and is meant to provide a method helping to apply inverse scattering algorithms to electrically large investigation domains. In particular, we focus on the depth slices that are particularly important in application on cultural heritage and propose in relationship with the depth slices a strategy that we will call “shifting zoom” that is specifically a method to mitigate the effects of the limited view angle in the linear tomographic inversion applied to GPR data. In particular, this paper is an extended version of the contribution (Persico et al. in: Proceedings of Imeko international conference on metrology for archaeology and cultural heritage, Lecce, Italy, 2017a), published in the Proceedings of the conference metrology for archaeology 2017. We propose here a validation of the shifting zoom versus experimental data gathered in a controlled test site, and we will show the effect of the shifting zoom on depth slices achieved from these data after a linear inverse scattering processing has been applied for their focusing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allred BJ, Redman D (2010) Location of agricultural drainage pipes and assessment of agricultural drainage pipe conditions using ground penetrating radar. J Environ Eng Geophys 15:119–134

    Article  Google Scholar 

  • Bertero M, Boccacci P (1998) Introduction to inverse problems in imaging. Institute of Physics Publishing, Bristol

    Book  Google Scholar 

  • Bevan B (1991) The search for graves. Geophysics 56:1310–1319

    Article  Google Scholar 

  • Campana S, Piro S (2009) Seeing the unseen: geophysics and landscape archaeology. CRC Press, Boca Raton

    Google Scholar 

  • Caorsi S, Pastorino M (2000) Two-dimensional microwave imaging approach based on a genetic algorithm. IEEE Trans Antennas Propag 48(3):370–372

    Article  Google Scholar 

  • Chianese D, D’Emilio M, Di Salvia S, Lapenna V, Ragosta M, Rizzo E (2004) Magnetic mapping, ground penetrating radar surveys and magnetic susceptibility. Measurements for the study of archaeological site of Serra di Vaglio (southern Italy). J Archaeol Sci 31:633–643

    Article  Google Scholar 

  • Collin RE (2001) Foundations of microwave engineering, 2nd edn. Wiley, Hoboken

    Book  Google Scholar 

  • Conyers LB (2004) Ground penetrating radar for archaeology. Alta Mira Press, Walnut Creek

    Google Scholar 

  • Conyers LB, Goodman D (1998) Ground penetrating radar: an introduction for archaeologists. AltaMira Press, Walnut Creek

    Google Scholar 

  • Daniels DJ (2004) Ground penetrating radar. IEEE, London

    Book  Google Scholar 

  • Gabellone F, Ferrario I, Giuri F, Limoncelli M (2010) Virtual Hierapolis: tra tecnicismo e realismo, in Arqueológica 2.0, II Congreso Internacional de Arqueología e Informática Gráfica, Patrimonio e Innovación, Sevilla, 16–19 Junio 2010, pp 279–284

  • Gennarelli G, Catapano I, Soldovieri F, Persico R (2015) On the achievable imaging performance in full 3-D linear inverse scattering. IEEE Trans Antennas Propag 63(3):1150–1155

    Article  Google Scholar 

  • Goodman D, Nishimura Y, Rogers JD (1995) GPR time slices in archaeological prospection. Archaeol Prospect 2:85–89

    Google Scholar 

  • Hansen TB, Johansen PM (2000) Inversion scheme for ground penetrating radar that takes into account the planar air–soil interface. IEEE Trans Geosci Remote Sens 38(1):23–34

    Article  Google Scholar 

  • Kadioglu S, Kadioglu YK (2010) Picturing internal fractures of historical statues using ground penetrating radar method. Adv Geosci 24:23–34

    Article  Google Scholar 

  • Lambot S, André F (2014) Full-wave modeling of near-field radar data for planar layered media reconstruction. IEEE Trans Geosci Remote Sens 52:2295–2303

    Article  Google Scholar 

  • Leucci G, Greco F (2012) 3d electrical resistivity tomography to reconstruct archaeological features in the subsoil of the “spirito santo” church ruins at the site of occhiola’ (sicily, italy). Archaeology 1(1):1–6

    Google Scholar 

  • Linford NT, Linford PK (2004) Short report, ground penetrating radar survey over a Roman Building at Groudwell Ridge, Blunsdon St Andrew, Swindon, UK. Archaeol Prospect 11:49–55

    Article  Google Scholar 

  • Liseno A, Tartaglione F, Soldovieri F (2004) Shape reconstruction of 2d buried objects under a Kirchhoff approximation. IEEE Geosci Remote Sens Lett 1(2):118–121

    Article  Google Scholar 

  • Mertens L, Persico R, Matera L, Lambot S (2016) Smart automated detection of reflection hyperbolas in complex GPR images with no a priori knowledge on the medium. IEEE Trans Geosci Remote Sens 54(1):580–596

    Article  Google Scholar 

  • Persico R (2014) Introduction to ground penetrating radar: inverse scattering and data processing. Wiley, Hoboken. ISBN 9781118305003

    Book  Google Scholar 

  • Persico R, Sala J (2014) The problem of the investigation domain subdivision in 2D linear inversions for large scale GPR data. IEEE Geosci Remote Sens Lett 11(7):1215–1219. https://doi.org/10.1109/LGRS.2013.2290008

    Article  Google Scholar 

  • Persico R, Pochanin G, Ruban V, Orlenko A, Catapano I, Soldovieri F (2016) Performances of a microwave tomographic algorithm for GPR systems working in differential configuration. IEEE J Sel Topics Appl Earth Observ Remote Sens 9:1343–1356

    Article  Google Scholar 

  • Persico R, Ludeno G, Soldovieri F, De Coster A, Lambot S (2017a) Shifting zoom on a linear inverse scattering algorithm applied to GPR data. In: Proceedings of Imeko international conference on metrology for archaeology and cultural heritage, Lecce, Italy

  • Persico R, Ludeno G, Soldovieri F, De Coster A, Lambot S (2017b) 2D linear inversion of GPR data with a shifting zoom along the observation line. Remote Sensing 9:980. https://doi.org/10.3390/rs9100980

    Article  Google Scholar 

  • Pettinelli E, Di Matteo A, Mattei E, Crocco L, Soldovieri F, Redman DJ, Annan AP (2009) GPR response from buried pipes: measurement on field site and tomographic reconstructions. IEEE Trans Geosci Remote Sens 47(8):2639–2645

    Article  Google Scholar 

  • Piro S, Goodman D, Nishimura Y (2003) The study and characterization of Emperor Traiano’s villa using high-resolution integrated geophysical surveys. Archaeol Prospect 10:1–25

    Article  Google Scholar 

  • Trinks I, Gansum T, Hinterleitner A (2010) Mapping iron-age graves in Norway using magnetic and GPR prospection. Antiquity 84:326

    Google Scholar 

  • Trinks I, Neubauer W, Hinterleitner A (2014) First high-resolution GPR and magnetic archaeological prospection at the viking age settlement of Birka in Sweden. Archaeol Prospect 21:185–199

    Article  Google Scholar 

  • Utsi E (2009) The shrine of Edward the confessor: a study in multi-frequency GPR investigation. In: IEEE, 978-1-4244-4605-6/09

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raffaele Persico.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Persico, R., Ludeno, G., Soldovieri, F. et al. Improvement of Ground Penetrating Radar (GPR) Data Interpretability by an Enhanced Inverse Scattering Strategy. Surv Geophys 39, 1069–1079 (2018). https://doi.org/10.1007/s10712-018-9493-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-018-9493-z

Keywords

Navigation