Skip to main content

Advertisement

Log in

Multi-frequency Electromagnetic Induction Survey for Archaeological Prospection: Approach and Results in Han Hangu Pass and Xishan Yang in China

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

This study presents the potential of multi-frequency electromagnetic induction (EMI) in archaeology. EMI is currently less employed for archaeological prospection with respect to other geophysical techniques. It is capable of identifying shallow subsurface relics by simultaneously measuring the apparent electrical conductivity (ECa) and apparent magnetic susceptibility (MSa). Moreover, frequency sounding is able to quantify the depths and vertical shapes of buried structures. In this study, EMI surveys with five frequencies were performed at two heritage sites with different geological conditions: Han Hangu Pass characterized by cinnamon soil and Xishan Yang by sandy loams. In the first site, high ECa values were observed with variations in depth correlated to archaeological remains. Moreover, electromagnetic anomalies related to an ancient road and five kiln caves were identified. In the second site, an ancient tomb, indicating extremely low ECa and high MSa, was discovered. Its electromagnetic properties are attributed to the cavity and ferroferric oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aitken MJ, Webster G, Rees A (1958) Magnetic prospecting. Antiquity 32:270–271

    Google Scholar 

  • Al-Gaadi K (2012) Employing electromagnetic induction techniques for the assessment of soil compaction. Am J Agric Biol Sci 4:425–434

    Google Scholar 

  • Allred BJ, Ehsani MR, Saraswat D (2005) The impact of temperature and shallow hydrologic conditions on the magnitude and spatial pattern consistency of electromagnetic induction measured soil electrical conductivity. Trans Am Soc Agric Eng 48(6):2123–2135

    Article  Google Scholar 

  • Atkinson RJC (1952) Méthodes électriques de prospection en archeologie. In: Laming A (ed) La découverte de passé. Picard, Paris, pp 59–70

    Google Scholar 

  • Becker H (1995) From nanotesla to picotesla—a new window for magnetic prospecting in archaeology. Archaeological Prospect 2:217–228

    Google Scholar 

  • Bekele A, Hudnall WH, Daigle JJ, Prudente JA, Wolcott M (2005) Scale dependent variability of soil electrical conductivity by indirect measures of soil properties. J Terrramech 42:339–351

    Article  Google Scholar 

  • Belshé JC (1957) Recent magnetic investigations at Cambridge University. Adv Phys 6(22):192–193

    Article  Google Scholar 

  • Bourgault RR, Rabenhorst MC (2012) Manganiferous soils in Maryland: regional extent and field-scale electromagnetic induction survey. Soil Sci Soc Am J 76:2128–2135

    Article  Google Scholar 

  • Brevik EC, Fenton TE (2004) The effect of changes in bulk density on soil electrical conductivity as measured with the Geonics® EM-38. Soil Surv Horiz 45:96–102

    Article  Google Scholar 

  • Brevik EC, Fenton TE, Lazari A (2006) Soil electrical conductivity as a function of soil water content and implications for soil mapping. Precis Agric 7:393–404

    Article  Google Scholar 

  • Calamita G, Perrone A, Brocca L, Onorati B, Manfreda S (2015) Field test of a multi-frequency electromagnetic induction sensor for soil moisture monitoring in southern Italy test sites. J Hydrol 529(1):316–329

    Article  Google Scholar 

  • Callegary JB, Ferré TPA, Groom RW (2007) Vertical spatial sensitivity and exploration depth of low-induction-number electromagnetic-induction instruments. Vadose Zone J 6(1):158–167

    Article  Google Scholar 

  • Callegary JB, Ferré TPA, Groom RW (2012) Three-dimensional sensitivity distribution and sample volume of low-induction-number electromagnetic induction instruments. Soil Sci Soc Am J 76(1):85–91

    Article  Google Scholar 

  • Conyers LB, Ernenwein EG, Grealy M, Lowe KM (2008) Electromagnetic conductivity mapping for site prediction in meandering river floodplains. Archaeol Prospect 15(2):81–91

    Article  Google Scholar 

  • Dalan RA (1991) Defining archaeological features with electromagnetic surveys at the Cahokia Mounds State Historic Site. Geophysics 56(8):1280–1287

    Article  Google Scholar 

  • De Clercq W, Bats M, Laloo P, Sergant J, Crombé P (2011) Beware of the known. Methodological issues in the detection of low density rural occupation in large surface archaeological landscape-assessment in Northern-Flanders (Belgium). In: Blanquaert G, Malain F, Stäube H, Vanmoerkerke J (eds) Understanding the past: a matter of surface-area. Acts of the XIIIth session of the EAA congress, Zadar. British Archaeological Reports, International Series. Archaeopress, Oxford, pp 73–89

    Google Scholar 

  • De Smedt P, Saey T, Lehouck A, Stichelbaut B, Meerschman E, Islam MM, De Vijver EV, Meirvenne MV (2013) Exploring the potential of multi-receiver EMI survey for geoarchaeological prospection: a 90 ha dataset. Geoderma 199(2):30–36

    Article  Google Scholar 

  • Doolittle JA, Brevik EC (2014) The use of electromagnetic induction techniques in soils studies. Geoderma 223(s223–s225):33–45

    Article  Google Scholar 

  • Doolittle J, Petersen M, Wheeler T (2001) Comparison of two electromagnetic induction tools in salinity appraisals. J Soil Water Conserv 56(3):257–262

    Google Scholar 

  • Doolittle JA, Indorante SJ, Potter DK, Hefner SG, McCauley WM (2002) Comparing three geophysical tools for locating sand blows in alluvial soils of southeast Missouri. J Soil Water Conserv 57(3):175–182

    Google Scholar 

  • Eder-Hinterleinter A, Neubauer W, Melichar P (1996) Restoring magnetic anomalies. Archaeological Prospect 3:185–197

    Article  Google Scholar 

  • Fedi M, Cella F, Florio G, La Manna M, Paoletti V (2017) Geomagnetometry for archaeology. In: Masini N, Soldovieri F (eds) Sensing the past. From artifact to historical site. Series: Geotechnologies and the environment. Springer, New York, pp 203–230 (ISBN: 978-3-319-50516-9)

    Google Scholar 

  • Gao X, Cote P, Blais JP, Dong W, Tong HW, Derobert X, Palma Lopes S, Zhang SQ, Chen FY (2016) Geophysical investigations identify hidden deposits with great potential for discovering Peking Man fossils at Zhoukoudian, China. Quatern Int 400:30–35

    Article  Google Scholar 

  • Grisso R, Alley MM, Holshouser D, Thomason W (2009) Precision farming tools: Soil electrical conductivity. Virginia Polytechnic Institute and State University, Petersburg

    Google Scholar 

  • Hesse A (2000) Count Robert du Mesnil du Buisson (1895–1986), a French precursor in geophysical survey for archaeology. Archaeol Prospect 7(7):43–49

    Article  Google Scholar 

  • Huang H (2005) Depth of investigation for small broadband electromagnetic sensors. Geophysics 70(6):G135–G142

    Article  Google Scholar 

  • Huang H, Won IJ (2000) Conductivity and susceptibility mapping using broadband electromagnetic sensors. J Environ Eng Geophys 5(4):31–41

    Article  Google Scholar 

  • Huang H, Won IJ (2003) Real-time resistivity sounding using a hand-held broadband electromagnetic sensor. Geophysics 68(10):1224–1231

    Article  Google Scholar 

  • James IT, Waine TW, Bradley RI, Taylor JC, Godwin RJ (2003) Determination of soil type boundaries using electromagnetic induction scanning techniques. Biosyst Eng 86(4):421–430

    Article  Google Scholar 

  • Jiang A, Chen F, Masini N, Capozzoli L, Romano G, Sileo M, Yang R, Tang P, Chen P, Lasaponara R, Liu G (2017) Archeological crop marks identified from Cosmo-SkyMed time series: the case of Han-Wei capital city, Luoyang, China. Int J Digit Earth 10(8):846–860

    Article  Google Scholar 

  • Kvamme KL (2003) Geophysical surveys as landscape archaeology. Am Antiq 68(3):435–457

    Article  Google Scholar 

  • Lasaponara R, Masini N (2008) Advances in remote sensing for archaeology and cultural heritage management. In: Proceedings of international EARSeL workshop “advances in remote sensing for archaeology and cultural heritage management”, Rome 30 September–4 October, 2008, Aracne, Roma, 2008. ISBN: 978-88-548-2030-2

  • Lasaponara R, Leucci G, Masini N, Persico R (2014) Investigating archaeological looting using satellite images and GEORADAR: the experience in Lambayeque in North Peru. J Archaeol Sci 42:216–230. https://doi.org/10.1016/j.jas.2013.10.032

    Article  Google Scholar 

  • Linford N (2004) From hypocaust to hyperbola: ground-penetrating radar surveys over mainly Roman Remains in the UK. Archaeol Prospect 11(11):237–246

    Article  Google Scholar 

  • Martinez G, Vanderlinden K, Ordóñez R, Muriel JL (2009) Can apparent electrical conductivity improve the spatial characterization of soil organic carbon? Vadose Zone J 8(3):586–593

    Article  Google Scholar 

  • Masini N, Soldovieri F (2017) Sensing the past. From artifact to historical site. Series: Geotechnologies and the environment, vol 16. Springer, New York. ISBN: 978-3-319-50516-9. https://doi.org/10.1007/978-3-319-50518-3

    Google Scholar 

  • Masini N, Capozzoli L, Chen P, Chen F, Romano G, Lu P, Tang P, Sileo M, Ge Q, Lasaponara R (2017) Towards an operational use of geophysics for Archaeology in Henan (China): Archaeogeophysical investigations, approach and results in Kaifeng. Remote Sens 9(8):809. https://doi.org/10.3390/rs9080809

    Article  Google Scholar 

  • McNeill JD, Bosnar M (1998) Application of dipole–dipole electromagnetic systems for geological depth sounding. Technical Note 31, Geonics Limited, Ontario

  • Novo A, Vincent ML, Levy TE (2012) Geophysical surveys at Khirbat Faynan, an Ancient Mound Site in Southern Jordan. Int J Geophys 432823:1–8

    Article  Google Scholar 

  • Rizzo E, Chianese D, Lapenna V (2005) Integration of magnetometric, GPR and geoelectric measurements applied to the archaeological site of Viggiano (Southern Italy, Agri Valley-Basilicata). Near Surf Geophys 3:13–19

    Article  Google Scholar 

  • Saey T, De Smedt P, Meerschman E, Islam MM, Meeuws F, Van De Vijver E, Lehouck A, Van Meirvenne M (2012) Electrical conductivity depth modelling with a multireceiver EMI sensor for prospecting archaeological features. Archaeol Prospect 19(1):21–30

    Article  Google Scholar 

  • Simpson D, Lehouck A, Van Meirvenne M, Bourgeois J, Thoen E, Vervloet J (2008) Geoarchaeological prospection of a medieval manor in the Dutch Polders using an electromagnetic induction sensor in combination with soil augerings. Geoarchaeology 23(2):305–319

    Article  Google Scholar 

  • Simpson D, Lehouck A, Verdonck L, Vermeersch H, Van Meirvenne M, Bourgeois J, Thoen E, Docter R (2009) Comparison between electromagnetic induction and fluxgate gradiometer measurements on the buried remains of a 17th century castle. J Appl Geophys 68(2):294–300

    Article  Google Scholar 

  • Sudduth KA, Kitchen NR, Bollero GA, Bullock DG, Wiebold WJ (2003) Comparison of electromagnetic induction and direct sensing of soil electrical conductivity. Agron J 95(3):472–482

    Article  Google Scholar 

  • Urban TM (2015) Ground-penetrating radar survey on the island of Pantelleria (Italy) reveals an ancient architectural complex with likely Punic and Roman components. J Appl Geophys 123:164–169

    Article  Google Scholar 

  • Ward SH (1967) Electromagnetic theory for geophysical applications. Min Geophys Theory II:13–196

    Google Scholar 

  • Ward SH, Hohmann GW (1988) Electromagnetic theory for geophysical applications. In: Nabighian MN (ed) Electromagnetic methods in applied geophysics, vol 1. SEG, Tulsa, pp 131–311

    Google Scholar 

  • White ML, Shaw JN, Raper RL, Rodekohr D, Wood CW (2012) A multivariate approach for high-resolution soil survey development. Soil Sci 177(5):345–354

    Article  Google Scholar 

  • Won IJ (1980) A wideband electromagnetic exploration method—some theoretical and experimental results. Geophysics 45(5):928–940

    Article  Google Scholar 

  • Won IJ, Keiswetter D, Hanson D, Novikova E, Hall T (1997) GEM-3: a monostatic broadband electromagnetic induction sensor. J Environ Eng Geophys 2(1):53–64

    Article  Google Scholar 

  • Zheng WF, Li XL, Lam N, Wang XB, Liu S, Yu XY, Sun ZL, Yao JM (2013) Applications of integrated geophysical method in archaeological surveys of the ancient Shu ruins. J Archaeol Sci 40(40):166–175

    Article  Google Scholar 

Download references

Acknowledgements

This research was jointly supported by funding from the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA19030502) and Hundred Talents Program of the Chinese Academy of Sciences (CAS) (Grant No. Y5YR0300QM).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fulong Chen or Nicola Masini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, P., Chen, F., Jiang, A. et al. Multi-frequency Electromagnetic Induction Survey for Archaeological Prospection: Approach and Results in Han Hangu Pass and Xishan Yang in China. Surv Geophys 39, 1285–1302 (2018). https://doi.org/10.1007/s10712-018-9471-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-018-9471-5

Keywords

Navigation