Multi-frequency Electromagnetic Induction Survey for Archaeological Prospection: Approach and Results in Han Hangu Pass and Xishan Yang in China

  • Panpan Tang
  • Fulong Chen
  • Aihui Jiang
  • Wei Zhou
  • Hongchao Wang
  • Giovanni Leucci
  • Lara de Giorgi
  • Maria Sileo
  • Rupeng Luo
  • Rosa Lasaponara
  • Nicola Masini


This study presents the potential of multi-frequency electromagnetic induction (EMI) in archaeology. EMI is currently less employed for archaeological prospection with respect to other geophysical techniques. It is capable of identifying shallow subsurface relics by simultaneously measuring the apparent electrical conductivity (ECa) and apparent magnetic susceptibility (MSa). Moreover, frequency sounding is able to quantify the depths and vertical shapes of buried structures. In this study, EMI surveys with five frequencies were performed at two heritage sites with different geological conditions: Han Hangu Pass characterized by cinnamon soil and Xishan Yang by sandy loams. In the first site, high ECa values were observed with variations in depth correlated to archaeological remains. Moreover, electromagnetic anomalies related to an ancient road and five kiln caves were identified. In the second site, an ancient tomb, indicating extremely low ECa and high MSa, was discovered. Its electromagnetic properties are attributed to the cavity and ferroferric oxides.


Multi-frequency EMI Electrical conductivity Magnetic susceptibility Archaeological prospection Geophysics Han Hangu Pass Xishan Yang China 



This research was jointly supported by funding from the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA19030502) and Hundred Talents Program of the Chinese Academy of Sciences (CAS) (Grant No. Y5YR0300QM).


  1. Aitken MJ, Webster G, Rees A (1958) Magnetic prospecting. Antiquity 32:270–271Google Scholar
  2. Al-Gaadi K (2012) Employing electromagnetic induction techniques for the assessment of soil compaction. Am J Agric Biol Sci 4:425–434Google Scholar
  3. Allred BJ, Ehsani MR, Saraswat D (2005) The impact of temperature and shallow hydrologic conditions on the magnitude and spatial pattern consistency of electromagnetic induction measured soil electrical conductivity. Trans Am Soc Agric Eng 48(6):2123–2135CrossRefGoogle Scholar
  4. Atkinson RJC (1952) Méthodes électriques de prospection en archeologie. In: Laming A (ed) La découverte de passé. Picard, Paris, pp 59–70Google Scholar
  5. Becker H (1995) From nanotesla to picotesla—a new window for magnetic prospecting in archaeology. Archaeological Prospect 2:217–228Google Scholar
  6. Bekele A, Hudnall WH, Daigle JJ, Prudente JA, Wolcott M (2005) Scale dependent variability of soil electrical conductivity by indirect measures of soil properties. J Terrramech 42:339–351CrossRefGoogle Scholar
  7. Belshé JC (1957) Recent magnetic investigations at Cambridge University. Adv Phys 6(22):192–193CrossRefGoogle Scholar
  8. Bourgault RR, Rabenhorst MC (2012) Manganiferous soils in Maryland: regional extent and field-scale electromagnetic induction survey. Soil Sci Soc Am J 76:2128–2135CrossRefGoogle Scholar
  9. Brevik EC, Fenton TE (2004) The effect of changes in bulk density on soil electrical conductivity as measured with the Geonics® EM-38. Soil Surv Horiz 45:96–102CrossRefGoogle Scholar
  10. Brevik EC, Fenton TE, Lazari A (2006) Soil electrical conductivity as a function of soil water content and implications for soil mapping. Precis Agric 7:393–404CrossRefGoogle Scholar
  11. Calamita G, Perrone A, Brocca L, Onorati B, Manfreda S (2015) Field test of a multi-frequency electromagnetic induction sensor for soil moisture monitoring in southern Italy test sites. J Hydrol 529(1):316–329CrossRefGoogle Scholar
  12. Callegary JB, Ferré TPA, Groom RW (2007) Vertical spatial sensitivity and exploration depth of low-induction-number electromagnetic-induction instruments. Vadose Zone J 6(1):158–167CrossRefGoogle Scholar
  13. Callegary JB, Ferré TPA, Groom RW (2012) Three-dimensional sensitivity distribution and sample volume of low-induction-number electromagnetic induction instruments. Soil Sci Soc Am J 76(1):85–91CrossRefGoogle Scholar
  14. Conyers LB, Ernenwein EG, Grealy M, Lowe KM (2008) Electromagnetic conductivity mapping for site prediction in meandering river floodplains. Archaeol Prospect 15(2):81–91CrossRefGoogle Scholar
  15. Dalan RA (1991) Defining archaeological features with electromagnetic surveys at the Cahokia Mounds State Historic Site. Geophysics 56(8):1280–1287CrossRefGoogle Scholar
  16. De Clercq W, Bats M, Laloo P, Sergant J, Crombé P (2011) Beware of the known. Methodological issues in the detection of low density rural occupation in large surface archaeological landscape-assessment in Northern-Flanders (Belgium). In: Blanquaert G, Malain F, Stäube H, Vanmoerkerke J (eds) Understanding the past: a matter of surface-area. Acts of the XIIIth session of the EAA congress, Zadar. British Archaeological Reports, International Series. Archaeopress, Oxford, pp 73–89Google Scholar
  17. De Smedt P, Saey T, Lehouck A, Stichelbaut B, Meerschman E, Islam MM, De Vijver EV, Meirvenne MV (2013) Exploring the potential of multi-receiver EMI survey for geoarchaeological prospection: a 90 ha dataset. Geoderma 199(2):30–36CrossRefGoogle Scholar
  18. Doolittle JA, Brevik EC (2014) The use of electromagnetic induction techniques in soils studies. Geoderma 223(s223–s225):33–45CrossRefGoogle Scholar
  19. Doolittle J, Petersen M, Wheeler T (2001) Comparison of two electromagnetic induction tools in salinity appraisals. J Soil Water Conserv 56(3):257–262Google Scholar
  20. Doolittle JA, Indorante SJ, Potter DK, Hefner SG, McCauley WM (2002) Comparing three geophysical tools for locating sand blows in alluvial soils of southeast Missouri. J Soil Water Conserv 57(3):175–182Google Scholar
  21. Eder-Hinterleinter A, Neubauer W, Melichar P (1996) Restoring magnetic anomalies. Archaeological Prospect 3:185–197CrossRefGoogle Scholar
  22. Fedi M, Cella F, Florio G, La Manna M, Paoletti V (2017) Geomagnetometry for archaeology. In: Masini N, Soldovieri F (eds) Sensing the past. From artifact to historical site. Series: Geotechnologies and the environment. Springer, New York, pp 203–230 (ISBN: 978-3-319-50516-9)Google Scholar
  23. Gao X, Cote P, Blais JP, Dong W, Tong HW, Derobert X, Palma Lopes S, Zhang SQ, Chen FY (2016) Geophysical investigations identify hidden deposits with great potential for discovering Peking Man fossils at Zhoukoudian, China. Quatern Int 400:30–35CrossRefGoogle Scholar
  24. Grisso R, Alley MM, Holshouser D, Thomason W (2009) Precision farming tools: Soil electrical conductivity. Virginia Polytechnic Institute and State University, PetersburgGoogle Scholar
  25. Hesse A (2000) Count Robert du Mesnil du Buisson (1895–1986), a French precursor in geophysical survey for archaeology. Archaeol Prospect 7(7):43–49CrossRefGoogle Scholar
  26. Huang H (2005) Depth of investigation for small broadband electromagnetic sensors. Geophysics 70(6):G135–G142CrossRefGoogle Scholar
  27. Huang H, Won IJ (2000) Conductivity and susceptibility mapping using broadband electromagnetic sensors. J Environ Eng Geophys 5(4):31–41CrossRefGoogle Scholar
  28. Huang H, Won IJ (2003) Real-time resistivity sounding using a hand-held broadband electromagnetic sensor. Geophysics 68(10):1224–1231CrossRefGoogle Scholar
  29. James IT, Waine TW, Bradley RI, Taylor JC, Godwin RJ (2003) Determination of soil type boundaries using electromagnetic induction scanning techniques. Biosyst Eng 86(4):421–430CrossRefGoogle Scholar
  30. Jiang A, Chen F, Masini N, Capozzoli L, Romano G, Sileo M, Yang R, Tang P, Chen P, Lasaponara R, Liu G (2017) Archeological crop marks identified from Cosmo-SkyMed time series: the case of Han-Wei capital city, Luoyang, China. Int J Digit Earth 10(8):846–860CrossRefGoogle Scholar
  31. Kvamme KL (2003) Geophysical surveys as landscape archaeology. Am Antiq 68(3):435–457CrossRefGoogle Scholar
  32. Lasaponara R, Masini N (2008) Advances in remote sensing for archaeology and cultural heritage management. In: Proceedings of international EARSeL workshop “advances in remote sensing for archaeology and cultural heritage management”, Rome 30 September–4 October, 2008, Aracne, Roma, 2008. ISBN: 978-88-548-2030-2Google Scholar
  33. Lasaponara R, Leucci G, Masini N, Persico R (2014) Investigating archaeological looting using satellite images and GEORADAR: the experience in Lambayeque in North Peru. J Archaeol Sci 42:216–230. CrossRefGoogle Scholar
  34. Linford N (2004) From hypocaust to hyperbola: ground-penetrating radar surveys over mainly Roman Remains in the UK. Archaeol Prospect 11(11):237–246CrossRefGoogle Scholar
  35. Martinez G, Vanderlinden K, Ordóñez R, Muriel JL (2009) Can apparent electrical conductivity improve the spatial characterization of soil organic carbon? Vadose Zone J 8(3):586–593CrossRefGoogle Scholar
  36. Masini N, Soldovieri F (2017) Sensing the past. From artifact to historical site. Series: Geotechnologies and the environment, vol 16. Springer, New York. ISBN: 978-3-319-50516-9.
  37. Masini N, Capozzoli L, Chen P, Chen F, Romano G, Lu P, Tang P, Sileo M, Ge Q, Lasaponara R (2017) Towards an operational use of geophysics for Archaeology in Henan (China): Archaeogeophysical investigations, approach and results in Kaifeng. Remote Sens 9(8):809. CrossRefGoogle Scholar
  38. McNeill JD, Bosnar M (1998) Application of dipole–dipole electromagnetic systems for geological depth sounding. Technical Note 31, Geonics Limited, OntarioGoogle Scholar
  39. Novo A, Vincent ML, Levy TE (2012) Geophysical surveys at Khirbat Faynan, an Ancient Mound Site in Southern Jordan. Int J Geophys 432823:1–8CrossRefGoogle Scholar
  40. Rizzo E, Chianese D, Lapenna V (2005) Integration of magnetometric, GPR and geoelectric measurements applied to the archaeological site of Viggiano (Southern Italy, Agri Valley-Basilicata). Near Surf Geophys 3:13–19CrossRefGoogle Scholar
  41. Saey T, De Smedt P, Meerschman E, Islam MM, Meeuws F, Van De Vijver E, Lehouck A, Van Meirvenne M (2012) Electrical conductivity depth modelling with a multireceiver EMI sensor for prospecting archaeological features. Archaeol Prospect 19(1):21–30CrossRefGoogle Scholar
  42. Simpson D, Lehouck A, Van Meirvenne M, Bourgeois J, Thoen E, Vervloet J (2008) Geoarchaeological prospection of a medieval manor in the Dutch Polders using an electromagnetic induction sensor in combination with soil augerings. Geoarchaeology 23(2):305–319CrossRefGoogle Scholar
  43. Simpson D, Lehouck A, Verdonck L, Vermeersch H, Van Meirvenne M, Bourgeois J, Thoen E, Docter R (2009) Comparison between electromagnetic induction and fluxgate gradiometer measurements on the buried remains of a 17th century castle. J Appl Geophys 68(2):294–300CrossRefGoogle Scholar
  44. Sudduth KA, Kitchen NR, Bollero GA, Bullock DG, Wiebold WJ (2003) Comparison of electromagnetic induction and direct sensing of soil electrical conductivity. Agron J 95(3):472–482CrossRefGoogle Scholar
  45. Urban TM (2015) Ground-penetrating radar survey on the island of Pantelleria (Italy) reveals an ancient architectural complex with likely Punic and Roman components. J Appl Geophys 123:164–169CrossRefGoogle Scholar
  46. Ward SH (1967) Electromagnetic theory for geophysical applications. Min Geophys Theory II:13–196Google Scholar
  47. Ward SH, Hohmann GW (1988) Electromagnetic theory for geophysical applications. In: Nabighian MN (ed) Electromagnetic methods in applied geophysics, vol 1. SEG, Tulsa, pp 131–311Google Scholar
  48. White ML, Shaw JN, Raper RL, Rodekohr D, Wood CW (2012) A multivariate approach for high-resolution soil survey development. Soil Sci 177(5):345–354CrossRefGoogle Scholar
  49. Won IJ (1980) A wideband electromagnetic exploration method—some theoretical and experimental results. Geophysics 45(5):928–940CrossRefGoogle Scholar
  50. Won IJ, Keiswetter D, Hanson D, Novikova E, Hall T (1997) GEM-3: a monostatic broadband electromagnetic induction sensor. J Environ Eng Geophys 2(1):53–64CrossRefGoogle Scholar
  51. Zheng WF, Li XL, Lam N, Wang XB, Liu S, Yu XY, Sun ZL, Yao JM (2013) Applications of integrated geophysical method in archaeological surveys of the ancient Shu ruins. J Archaeol Sci 40(40):166–175CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital EarthChinese Academy of SciencesBeijingChina
  2. 2.International Centre on Space Technologies for Natural and Cultural Heritage Under the Auspices of UNESCOBeijingChina
  3. 3.Institute of Conservation and Management of Xin’an Hangu Pass (Han Dynasty), Cultural Relic Bureau of Xin’an CountyLuoyangChina
  4. 4.Institute for Archaeological and Monumental HeritageNational Research Council (CNR)LecceItaly
  5. 5.Institute for Archaeological and Monumental HeritageNational Research Council (CNR)Tito ScaloItaly
  6. 6.Institute of Cultural Relics and Archaeology of Zhejiang ProvinceHangzhouChina
  7. 7.Institute of Methodologies for Environmental AnalysisNational Research Council (CNR)Tito ScaloItaly

Personalised recommendations