Skip to main content

Advertisement

Log in

Lightning Discharges, Cosmic Rays and Climate

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

The entirety of the Earth’s climate system is continuously bombarded by cosmic rays and exhibits about 2000 thunderstorms active at any time of the day all over the globe. Any linkage among these vast systems should have global consequences. Numerous studies done in the past deal with partial links between some selected aspects of this grand linkage. Results of these studies vary from weakly to strongly significant and are not yet complete enough to justify the physical mechanism proposed to explain such links. This review is aimed at presenting the current understanding, based on the past studies on the link between cosmic ray, lightning and climate. The deficiencies in some proposed links are pointed out. Impacts of cosmic rays on engineering systems and the possible effects of cosmic rays on human health are also briefly discussed. Also enumerated are some problems for future work which may help in developing the grand linkage among these three vast systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

(Modified, after Harrison 2004)

Fig. 2
Fig. 3

(After Splitt et al. 2010)

Fig. 4

(Source: Image courtesy NASA, Dwyer and Uman 2014)

Fig. 5

(Reproduced with permission from Sato 2016)

Fig. 6

(Reproduced with permission from Reitz 1993)

Similar content being viewed by others

References

  • Abbas MA, Latham J (1967) The instability of evaporating charged drops. J Fluid Mech 30:663–670

    Google Scholar 

  • Aniol R (1952) Schwankungen der Gewitterhaufigkeit in Suddeutschland. Meteorol Rundsch 3(4):55–56

    Google Scholar 

  • Anisimov SV, Mareev EA (2008) Geophysical studies of the global electric circuit. Izvest Phys Solid Earth 44:760. https://doi.org/10.1134/S1069351308100030

    Google Scholar 

  • Aplin KL, McPheat RA (2008) An infra-red filter radiometer for atmospheric cluster ion detection. Rev Sci Instrum 79:106–107

    Google Scholar 

  • Aplin KL, Harrison RG, Rycroft MJ (2008) Investigating earth’s atmospheric electricity: a role model for planetary studies. Space Sci Rev 137:11–27

    Google Scholar 

  • Arnold F (2006) Atmospheric aerosol and cloud condensation nuclei formation: a possible influence of cosmic rays? Space Sci Rev 125:169–186

    Google Scholar 

  • Babich LP (2005) Analysis of a new electron-runaway mechanism and record-high runaway-electron currents achieved in dense-gas discharges. Phys Usp 48:1015–1037

    Google Scholar 

  • Babich LP, Loiko TV (2009) Subnanosecond pulses of runaway electrons generated in atmosphere by high-voltage pulses of microsecond duration. Dokl Phys 429:479–482. https://doi.org/10.1134/S1028335809110019

    Google Scholar 

  • Babich LP, Bochkov EI, Donskol EN, Kutsyk IM (2010) Source of prolonged bursts of high-energy gamma rays detected in thunderstorm atmosphere in Japan at the coastal area of the Sea of Japan and on high mountaintop. J Geophys Res 115:A09317. https://doi.org/10.1029/2009JA015017

    Google Scholar 

  • Babich LP, Bochkov EI, Dwyer JR, Kutsyk IM (2012) Numerical simulations of local thundercloud field enhancements caused by runaway avalanches seeded by cosmic rays and their role in lightning initiation. J Geophys Res 117:A09316. https://doi.org/10.1029/2012JA017799

    Google Scholar 

  • Babich LP, Bochkov EI, Kutsyk IM, Neubert T, Chanrion O (2016) Positive streamer initiation from raindrops in thundercloud fields. J Geophys Res 121:6393–6403. https://doi.org/10.1002/2016JD024901

    Google Scholar 

  • Babich LP, Bochkov EI, Neubert T (2017) The role of charged ice hydrometeors in lightning initiation. J Atmos Sol Terr Phys 154:43–46. https://doi.org/10.1016/j.jastp.2016.12.010

    Google Scholar 

  • Barlow WH (1849) On the spontaneous electric currents observed in wires of the electric telegraph. Philos Trans R Soc Lond 139:61–72

    Google Scholar 

  • Baumgaertner AJG, Thayer JP, Neely RR, Lucas G III (2013) Toward a comprehensive global electric circuit model: atmospheric conductivity and its variability in CESM (WACCM) model simulations. J Geophys Res 118:9221–9232. https://doi.org/10.1002/jgrd.50725

    Google Scholar 

  • Baumgaertner AJG, Lucas GM, Thayer JP, Mallios SA (2014) On the role of clouds in the fair weather part of the global electric circuit. Atmos Chem Phys 14:8599–8610. https://doi.org/10.5194/acp-14-8599-2014

    Google Scholar 

  • Bolduc L (2002) GIC observations and studies in the Hydro-Quebec power system. J Atmos Sol Terr Phys 64:1793–1802. https://doi.org/10.1016/S1364-6826(02)00128-1

    Google Scholar 

  • Boteler DH, Pirjola RJ, Nevanlinna H (1998) The effects of geomagnetic disturbances on electrical systems at the Earth’s surface. Adv Space Res 22:17–27

    Google Scholar 

  • Britten RA, Davis LK, Johnson AM, Keeney S, Siegel A, Sanford LD, Singletary SJ, Lonart G (2012) Low (20 cGy) doses of 1 GeV/u (56) Fe-particle radiation lead to a persistent reduction in the spatial learning ability of rats. Radiat Res 177:146–151

    Google Scholar 

  • Brooks CEP (1925) The distribution of thunderstorms over the globe. Geophys Mem 3(24):147–164

    Google Scholar 

  • Brooks CEP (1934) The variations of the annual frequency of thunderstorms in relation to sunspots. Q J R Meteorol Soc 60:153–165

    Google Scholar 

  • Burns GB, Tinsley BA, Frank-Kamenetsky AV, Bering EA (2007) Interplanetary magnetic field and atmospheric electric circuit influences on ground-level pressure at Vostok. J Geophys Res 112:D04103. https://doi.org/10.1029/2006JD007246

    Google Scholar 

  • Burns GB, Tinsley BA, French WJR, Troshichev OA, Frank-Kamenetsky AV (2008) Atmospheric circuit influences on ground-level pressure in the Antarctic and Arctic. J Geophys Res 113:D15112. https://doi.org/10.1029/2007JD009618

    Google Scholar 

  • Carey LD, Buffalo KM (2007) Environmental control of cloud-to-ground lightning polarity in severe storms. Mon Weather Rev 135:1327–1353

    Google Scholar 

  • Cecil DJ, Buechler DE, Blakeslee RJ (2014) Gridded lightning climatology from TRMM-LIS and OTD: dataset description. Atmos Res 135–136:404–414. https://doi.org/10.1016/j/atmosres.2012.06.028

    Google Scholar 

  • Celestin S, Pasko VP (2011) Energy and fluxes of thermal runaway electrons produced by exponential growth of streamers during the stepping of lightning leaders and in transient luminous events. J Geophys Res 116:A03315. https://doi.org/10.1029/2010JA016260

    Google Scholar 

  • Celestin S, Xu W, Pasko VP (2012) Terrestrial gamma ray flashes with energies up to 100 MeV produced by nonequilibrium acceleration of electrons in lightning. J Geophys Res 117:A05315. https://doi.org/10.1029/2012JA017535

    Google Scholar 

  • Chalmers JA (1962) The measurement of vertical electric current in the atmosphere. J Atmos Terr Phys 24:297–302

    Google Scholar 

  • Chilingarian A (2014) Thunderstorm ground enhancements—model and relation to lightning flashes. J Atmos Sol Terr Phys 107:68–76

    Google Scholar 

  • Chilingarian A, Daryan A, Arakelyan K, Hovhannisyan A, Mailyan B, Melkumyan L, Hovsepyan G, Chilingaryan S, Reymers A, Vanyan L (2010) Ground-based observations of thunderstorm correlated fluxes of high-energy electrons, gamma rays, and neutrons. Phys Rev D 82:043009

    Google Scholar 

  • Chilingarian A, Mailyan B, Vanyan L (2012) High-energy atmospheric physics; terrestrial gamm-ray flashes and related phenomena. Space Sci Rev 173:133–196

    Google Scholar 

  • Chilingarian A, Hovsepyan G, Kozliner L (2013) Thunderstorm ground enhancements: gamma ray differential energy spectra. Phys Rev D 88:073001

    Google Scholar 

  • Chilingarian A, Chilingaryan S, Reymers A (2015) Atmospheric discharges and particle fluxes. J Geophys Res. https://doi.org/10.1002/2015JA021259

    Google Scholar 

  • Christian H, Holmes CR, Bullock JW, Gaskell W, Illingwork AJ, Latham J (1980) Air borne and ground based studies of thunderstorm in the vicinity of Langmuir Laboratory. Q J R Meteorol Soc 106:159–174

    Google Scholar 

  • Christian HJ, Blakeslee RJ, Boccippio DJ, Boeck WJ, Buechler DE, Driscoll KT, Goodman SJ, Hall JM, Koshak WJ, Mach DM, Stewart MF (2003) Global frequency and distribution of lightning as observed from space by the optical transient detector. J Geophys Res 108:4005. https://doi.org/10.1029/2002JD002347

    Google Scholar 

  • Christofidou-Solomidou M, Pietrofesa RA, Arguiri E, Schweitzer KS, Berdyshev EV, McCarthy M et al (2015) Space radiation-associated lung injury in a murine model. Am J Physiol Lung Cell Mol Physiol 308:L416–L428. https://doi.org/10.1152/ajplung.00260.201

    Google Scholar 

  • Colman JJ, Roussel-Dupré R, Triplett L (2010) Temporally self-similar electron distribution functions in atmospheric breakdown: the thermal runaway regime. J Geophys Res 115:1–17. https://doi.org/10.1029/2009JA014509

    Google Scholar 

  • Connaughton V et al (2010) Associations between Fermi Gamma-ray Burst Monitor terrestrial gamma ray flashes and sferics from the World Wide Lightning Location Network. J Geophys Res 115:A12307. https://doi.org/10.1029/2010JA015681

    Google Scholar 

  • Connaughton V et al (2013) Radio signals from electron beams in terrestrial gamma ray flashes. J Geophys Res 118:2313–2320. https://doi.org/10.1029/2012JA018288

    Google Scholar 

  • Copeland K, Sauer HH, Duke FE, Friedberg W (2008) Cosmic radiation exposure of aircraft occupants on simulated high-latitude flights during solar proton events from 1 January 1986 through 1 January 2008. Adv Space Res 42:1008–1029

    Google Scholar 

  • Cummer SA, Zhai Y, Hu W, Smith DM, Lopez LI, Stanley MA (2005) Measurements and implications of the relationship between lightning and terrestrial gamma ray flashes. Geophys Res Lett 32:L08811. https://doi.org/10.1029/2005GL022778

    Google Scholar 

  • Cummer SA, Briggs MS, Dwyer JR, Xiong S, Connaughton V, Fishman GJ, Lu G, Lyu F, Solanki R (2014) The source altitude, electric current, and intrinsic brightness of terrestrial gamma ray flashes. Geophys Res Lett 41:85868593. https://doi.org/10.1002/2014GL062196

    Google Scholar 

  • da Vieira LEA, Silva LA (2006) Geomagnetic modulation of clouds effects in the Southern Hemisphere Magnetic Anomaly through lower atmosphere cosmic ray effects. Geophys Res Lett 33:L14802. https://doi.org/10.1029/2006GL026389

    Google Scholar 

  • Deierling W, Peterson WA (2008) Total lightning activity as an indicator of updraft characteristics. J Geophys Res 113:D16210. https://doi.org/10.1029/2007JD009598

    Google Scholar 

  • Del Genio AD, Mao-Sung Y, Jonas J (2007) Will moist convection be stronger in a warmer climate? Geophys Res Lett 34:L16703. https://doi.org/10.1029/2007GL030525

    Google Scholar 

  • Duggal SP, Tsurutani BT, Pomerantz MA, Tsao CH, Smith EJ (1981) Relativistic cosmic rays and corotating interaction regions. J Geophys Res 86:7473

    Google Scholar 

  • Duplissy J et al (2010) Results from the CERN pilot CLOUD experiment. Atmos Chem Phys 10:1635–1647

    Google Scholar 

  • Duro MAS, Kaufmann P, Bertoni FCP, Rodrigues ECN, Pissolato FJ (2012) Long-term power transmission failures in Southeastern Brazil and the geophysical environment. Surv Geophys 33:973–989. https://doi.org/10.1007/s10712-012-9191-1

    Google Scholar 

  • Dwyer JR (2008) Source mechanisms of terrestrial gamma-ray flashes. J Geophys Res 113:D10103. https://doi.org/10.1029/2007JD009248

    Google Scholar 

  • Dwyer JR, Smith DM (2005) A comparison between Monte Carlo simulations of runaway breakdown and terrestrial gamma-ray flash observations. Geophys Res Lett 32:L22804. https://doi.org/10.1029/2005GL023848

    Google Scholar 

  • Dwyer JR, Uman MA (2014) The physics of lightning. Phys Rep 534:147–241

    Google Scholar 

  • Dwyer JR, Uman MA, Rassoul HK, Rakov VA, Al-Dayeh M, Caraway EL, Wright B, Jerauld J, Jordan DM, Rambo KJ, Chrest A, Smyth C (2004) A ground level gamma-ray burst observed in association with rocket-triggered lightning. Geophys Res Lett 31:L05119. https://doi.org/10.1029/2003GL018771

    Google Scholar 

  • Dwyer JR, Coleman LM, Lopez R, Saleh Z, Concha D, Brown M, Rassoul HK (2006) Runaway breakdown in the Jovian atmospheres. Geophys Res Lett 33:L22813. https://doi.org/10.1029/2006GL027633

    Google Scholar 

  • Dwyer JR, Grefenstette BW, Smith DM (2008) High-energy electron beams launched into space by thunderstorms. Geophys Res Lett 35:L02815. https://doi.org/10.1029/2007GL032430

    Google Scholar 

  • Dwyer JR, Smith D, Cummer SA (2012) High energy atmospheric physics: terrestrial gamma-ray flashes and related phenomena. Space Sci Rev 173:133–196. https://doi.org/10.1007/s11214-012-9894-0

    Google Scholar 

  • Eastwood JP (2008) The science of space weather. Philos Trans R Soc A 366:4489–4500. https://doi.org/10.1098/rsta.2008.0161

    Google Scholar 

  • Eichkorn S, Wilhelm S, Aufmhoff H, Wohlfrom KH, Arnold F (2002) Cosmic ray-induced aerosol-formation: first observational evidence from aircraft-based ion mass spectrometer measurements in the upper troposphere. Geophys Res Lett 29:1698. https://doi.org/10.1029/2002GL015044

    Google Scholar 

  • Elsworth Y, Howe R, Isaak GR, Mcleord CP, Miller BA, New R, Speeke CC, Wheeler SJ (1994) Solar p-mode frequencies and their dependence on solar activity recent results from the BISON network. Astrophys J 434:801–806

    Google Scholar 

  • Erlykin AD, Sloan T, Wolfendale AW (2010) Correlations of clouds, cosmic rays and solar radiation over the Earth. J Atmos Sol Terr Phys 72:151

    Google Scholar 

  • Ermakov VI (1993) Lightning as traces of ultrahigh-energy cosmic particles. Nauka Zhizn 7:92–98

    Google Scholar 

  • Ermakov VI, Stozhkov YI (1999) New mechanism of thundercloud and lightning production. In: Proceedings of 11th international conference on atmospheric electricity, Alabama, USA, pp 242–245

  • Farrell WM et al (2004) Electric and magnetic signatures of dust devils from the 2000–2001 MATADOR desert tests. J Geophys Res 109:E03004. https://doi.org/10.1029/2003JE002088

    Google Scholar 

  • Finney DL, Doherty RM, Wild O, Young PJ, Butler A (2016) Response of lightning NOx emissions and ozone production to climate change: insights from the atmospheric chemistry and climate model intercomparison project. Geophys Res Lett 43:5492–5500. https://doi.org/10.1002/2016GL068825

    Google Scholar 

  • Fishman GJ et al (1994) Discovery of intense gamma-ray flashes of atmospheric origin. Science 264:1313–1316

    Google Scholar 

  • Galloway JM, Dentener FJ, Capone DG et al (2004) Nitrogen cycles: past, present and future. Biogeochemistry 70:153–226

    Google Scholar 

  • Girish TE, Eapen PE (2008) Geomagnetic and sunspot activity associations and ionospheric effects of lightning phenomena at Trivandrum near dip equator. J Atmos Sol Terr Phys 70:2222–2226

    Google Scholar 

  • Goetz JG et al (2011) Biomechanical remodeling of the microenvironment by stromal caveolin-1 favors tumor invasion and metastasis. Cell 146:148–163. https://doi.org/10.1016/j.cell.2011.05.040

    Google Scholar 

  • Gray LJ, Haigh JD, Harrison RG (2005) A review of the influence of solar changes on the Earth’s climate. Hadley Centre technical note 62, The UK Met Office

  • Gray LJ, Rumbold S, Shine KP (2009) Stratospheric temperature and radiative forcing response to 11-year solar cycle changes in irradiance and ozone. J Atmos Sci 66:2402–2417

    Google Scholar 

  • Gray LJ, Beer J, Geller M, Haigh JD, Lockwood M, Matthes K, Cubasch U, Fleitmann D, Harrison G, Hood L, Luterbacher J, Meehl GA, Shindell D, van Geel B, White W (2010) Solar influences on climate. Rev Geophys 48:RG4001. https://doi.org/10.1029/2009RG000282

    Google Scholar 

  • Gurevich AV (1961) On the theory of runaway electrons. Sov Phys JETP 12:904–912

    Google Scholar 

  • Gurevich AV, Zybin KP (2001) Runaway breakdown and electric discharges in thunderstorms. Phys Usp 44:1119–1140. https://doi.org/10.1070/PU2001v044n11ABEH000939

    Google Scholar 

  • Gurevich AV, Zybin KP (2005) Runaway breakdown and the mysteries of lightning. Phys Today. https://doi.org/10.1063/1.1995746

    Google Scholar 

  • Gurevich AV, Milikh GM, Roussel-Dupré RA (1992) Runaway electron mechanism of air break-down and preconditioning during a thunderstorm. Phys Lett A 165:463–468

    Google Scholar 

  • Gurevich AV, Milikh GM, Valdiva JA (1997) Model X-ray emission and fast precondition during a thunderstorm. Phys Lett A 231:402–408. https://doi.org/10.1016/S0375-9601(97)00554-X

    Google Scholar 

  • Gurevich AV, Zybin KP, Roussel-Dupre RA (1999) Lightning initiation by simultaneous effect of runaway breakdown and cosmic ray showers. Phys Lett A 254:79–87

    Google Scholar 

  • Gurevich AV, Karashtin AN, Ryabov VA, Chubenko AP, Shepetov AL (2009) Non-linear phenomena in ionosphere plasma. The influence of cosmic rays and the runaway electron breakdown on the thunderstorm discharges. Phys Usp 179:779 (in Russian)

    Google Scholar 

  • Hamid EY, Kawasaki Z, Mardiana R (2001) Impact of the 1997–98 El Nino on lightning activity over Indonesia. Geophys Res Lett 28:147–150

    Google Scholar 

  • Hansen J et al (2005) Efficacy of climate forcing. J Geophys Res 110:D18104. https://doi.org/10.1029/2005JD005776

    Google Scholar 

  • Harrison RG (2000) Cloud formation and the possible significance of change for atmospheric condensation and ice nuclei. Space Sci Rev 94:381–396

    Google Scholar 

  • Harrison RG (2004) The global atmospheric electric circuit and climate. Surv Geophys 25:441–484

    Google Scholar 

  • Harrison RG, Ambaum MHP (2008) Enhancement of cloud formation by droplet charging. Proc R Soc Lond A 464:2561–2573

    Google Scholar 

  • Harrison RG, Ambaum MHP (2010) Observing Forbush decreases in cloud at Shetland. J Atmos Sol Terr Phys 72:1408–1414

    Google Scholar 

  • Harrison RG, Carslaw KS (2003) Ion–aerosol–cloud processes in the lower atmosphere. Rev Geophys 41:1012. https://doi.org/10.1029/2002RG000114

    Google Scholar 

  • Harrison RG, Tammet H (2008) Ions in the terrestrial atmosphere and other solar system atmospheres. Space Sci Rev 137:107–118. https://doi.org/10.1007/s11214-008-9356-x

    Google Scholar 

  • Harrison RG, Usoskin I (2010) Solar modulation in surface atmospheric electricity. J Atmos Sol Terr Phys 72:176–182

    Google Scholar 

  • Harrison RG, Chalmers N, Hogan RJ (2008) Retrospective cloud determinations from surface solar radiation measurements. Atmos Res 90:54–62

    Google Scholar 

  • Harrison RG, Aplin K, Rycroft M (2010) Atmospheric electricity coupling between earthquake regions and the ionosphere. J Atmos Sol Terr Phys 72(5–6):376–381

    Google Scholar 

  • Hebert L III, Tinsley BA, Zhou L (2012) Global electric circuit modulation of winter cyclone vorticity in the northern high latitudes. Adv Space Res 50:806–818

    Google Scholar 

  • Hoppel WA, Anderson RV, Willett JC (1986) Atmospheric electricity in the planetary boundary layer. The Earth’s electrical environment. National Academy Press, Washington, pp 149–165

    Google Scholar 

  • Huttunen KEJ, Kilpua SP, Pulkkinen A, Viljanen A, Tanskanen E (2008) Solar wind drivers of large geomagnetically induced currents during the solar cycle 23. Space Weather 6:S10002. https://doi.org/10.1029/2007SW000374

    Google Scholar 

  • Jangiam W, Tungjai M, Rithidech KN (2015) Induction of chronic oxidative stress, chronic inflammation and aberrant patterns of DNA methylation in the liver of titanium-exposed CBA/CaJ mice. Int J Radiat Biol 91:389–398

    Google Scholar 

  • Jansky J, Lucas GM, Kalb C, Bayona V, Peterson MJ, Deierling W, Flyer N, Pasko VP (2017) Analysis of the diurnal variation of the global electric circuit obtained from different numerical models. J Geophys Res 122:12096–12917. https://doi.org/10.1002/2017JD026515

    Google Scholar 

  • Jones PA (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 13:484–492. https://doi.org/10.1038/nrg3230

    Google Scholar 

  • Jun-Fang W, Qie X-S, Hong L, Ji-Long Z, Xiao-XiaY Feng S (2012) Effect of thunderstorm electric field on intensity of cosmic ray muons. Acta Phys Sin 15:159202. https://doi.org/10.7498/aps.61.159202

    Google Scholar 

  • Kalb C, Deierling W, Baumgaertner A, Peterson M, Liu C, Mach D (2016) Parameterizing total storm conduction currents in the community earth system model. J Geophys Res 121:13715–13734. https://doi.org/10.1002/2016JD025376

    Google Scholar 

  • Kamra AK, Nair AA (2015) The impact of the Western Ghats on lightning activity on the western coast of India. Atmos Res 160:82–90

    Google Scholar 

  • Kamra AK, Siingh D, Gautam AS, Kanawade VP, Tripathi SN, Srivastava AK (2015) Atmospheric ions and new particle formation events at a tropical location, Pune, India. Q J R Meteorol Soc 141:3140–3156. https://doi.org/10.1002/qj.2598

    Google Scholar 

  • Kandalgaonkar SS, Tinmaker MIR, Kulkarni JR, Nath A, Kulkarni MK, Trimbke HK (2005) Spatio-temporal variability of lightning activity over the Indian region. J Geophys Res 110:D11108

    Google Scholar 

  • Kappenman JG (2004) An overview of the increasing vulnerability trends of modern electric power grid infrastructures and the potential consequences of extreme space weather environments. In: Daglis IA (ed) Effects of space weather on technology infrastructure, vol 176. NATO science series. II. Mathematics, physics and chemistry, chapter 14: space weather and the vulnerability of electric power grids. Kluwer Academic Publishers, Dordrecht, pp 257–286

    Google Scholar 

  • Kappenman JG (2005) An overview of the impulsive geomagnetic field disturbances and power grid impacts associated with the violent Sun–Earth connection events of 29–31 October 2003 and a comparative evaluation with other contemporary storms. Space Weather 3(S08):C01. https://doi.org/10.1029/2004SW000128

    Google Scholar 

  • Kar SK, Liou Y-A, Ha K-J (2009) Aerosol effects on the enhancement of cloud-to-ground lightning over major urban areas of South Korea. Atmos Res 92:80–87. https://doi.org/10.1016/j.atmosres.2008.09.004

    Google Scholar 

  • Karapetyan GG (2012) Theoretical investigation of thunderstorm induced enhancements of cosmic ray fluxes. Astropart Phys 38:46–52

    Google Scholar 

  • Karma AK, Bhalwankar RV, Sathe AB (1993) The onset of disintegration and corona in water drops falling at terminal velocity in horizontal electric fields. J Geophys Res 98:12901–12912

    Google Scholar 

  • Kernthaler SC, Toumi R, Haigh JD (1999) Some doubts concerning a link between cosmic ray fluxes and global cloudiness. Geophys Res Lett 26:863–865

    Google Scholar 

  • Khain A, Arkhipov V, Pinsky M et al (2004) Rain enhancement and fog elimination by seeding with charged droplets. Part I: theory and numerical simulations. J Appl Meteorol 43:1513–1529

    Google Scholar 

  • Kirkby J (2007) Cosmic rays and climate. Surv Geophys 28:333–357

    Google Scholar 

  • Kirkby J et al (2011) Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation. Nature 476:429–433. https://doi.org/10.1038/nature10343

    Google Scholar 

  • Klemperer W, Vaida V (2006) Molecular complexes in close and far away. Proc Natl Acad Sci 103:10584–10588

    Google Scholar 

  • Kleymenova EP (1967) On the variation of the thunderstorm activity in the solar cycle. Glav Upirav Gidromet Scuzb Met Gidr 8:64–68

    Google Scholar 

  • Kniveton DR, Tinsley BA, Burns GB, Bering EA, Troshichev OA (2008) Variations in global cloud cover and the fair-weather vertical electric field. J Atmos Sol Terr Phys 70:1633–1642

    Google Scholar 

  • Kodera K (2004) Solar influence on the Indian Ocean Monsoon through dynamical processes. Geophys Res Lett 31:L24209. https://doi.org/10.1029/2004GL02092

    Google Scholar 

  • Komm RW, Howe R, Hill F (2000) Width and energy of solar p-modes observed by global oscillation network group. Astrophys J 543:472–485. https://doi.org/10.1086/6131101

    Google Scholar 

  • Koskinen H, Tanskanen E, Pirjola R, Pulkkinen A, Dyer C, Rodgers D, Cannon P (2001) Space weather effects catalogue. In: ESA space weather programme feasibility studies, FMI, QinetiQ, RAL Consortium

  • Krehbiel PR, Riousset JA, Pasko VP, Thomas RJ, Rison W, Stanley MA, Edens HE (2008) Upward electrical discharges from thunderstorms. Nat Geosci 1(4):233–237. https://doi.org/10.1038/ngeo162

    Google Scholar 

  • Kuang Z, Jiang Y, Yung YL (1998) Cloud optical thickness variations during 1983–1991. Geophys Res Lett 25:1415–1417

    Google Scholar 

  • Kudela K (2009) On energetic particles in space. Acta Phys Slovaca 59:537–652

    Google Scholar 

  • Kudela K, Storini M, Hofer MY, Belov A (2000) Cosmic rays in relation to space weather. Space Sci Rev 93:153–174

    Google Scholar 

  • Kulak A, Mlynarczyk J, Ostrowski M, Kubisz J, Michalec A (2012) Analysis of ELF electromagnetic field pulses recorded by the Hylaty station coinciding with terrestrial gamma-ray flashes. J Geophys Res 117:D18203. https://doi.org/10.1029/2012JD018205

    Google Scholar 

  • Kulkarni MN, Siingh D (2014) The relation between lightning and cosmic rays during ENSO with and without IOD. Atmos Res 143:129–141. https://doi.org/10.1016/j/atmosres.2014.010

    Google Scholar 

  • Kulkarni MN, Siingh D (2016) The atmospheric electrical index for ENSO modoki: is ENSO modoki one of the factor responsible for the worming trends slowdown? Nat Sci Rep. https://doi.org/10.1038/srep24009

    Google Scholar 

  • Kulmala M, Riipinen I, Nieminen T, Hulkkonen M, Sogacheva L, Manninen HE, Paasonen P, Petäjä T, Dal Maso M, Aalto PP, Viljanen A, Usoskin I, Vainio R, Mirme S, Mirme A, Minikin A, Petzold A, Hõrrak U, Plaß-Dülmer C, Birmili W, Kerminen V-M (2010) Atmospheric data over a solar cycle: no connection between galactic cosmic rays and new particle formation. Atmos Chem Phys 10:1885–1898. https://doi.org/10.5194/acp-10-1885-2010

    Google Scholar 

  • Kumar CPA, Balan N, Panneerselvam C, Victor NJ, Selvaraj C, Nair KU, Elango P, Jeeva K, Akhila JC, Gurubaran S (2017) Investigation of the influence of galactic cosmic rays on clouds and climate in Antarctica. Proc Indian Natl Sci Acad. https://doi.org/10.16943/ptinsa/2017/49028

    Google Scholar 

  • Laakso L, Makela JM, Pirjola L, Kulmala M (2002) Model studies on ion-induced nucleation in the atmosphere. J Geophys Res 107:4427

    Google Scholar 

  • Lam MM, Tinsley BA (2015) Solar wind-atmospheric electricity-cloud microphysics connections to weather and climate. J Atmos Sol Terr Phys 149:277–290

    Google Scholar 

  • Lanzerotti LJ, Thomson DJ, Melori A, Medford LV, Maclennan CG (1986) Electromagnetic study of the Atlantic continental margin using a section of a transatlantic cable. J Geophys Res 91:7417–7427

    Google Scholar 

  • Lanzerotti LJ, Sayres CH, Medford LV, Kraus JS, Maclennan CG, Thomson DJ (1993) Statistical study of induced voltage across oceanic telecommunications cables. In: Proceedings of 1992 solar terrestrial prediction conference, vol 1, p 224

  • Latham J, Mason BJ (1962) Electrical charging of hail pellets in a polarizing electric field. Proc R Soc Lond Ser A Math Phys Sci 266(1326):387–401

    Google Scholar 

  • Laut P (2003) Solar activity and terrestrial climate: an analysis of some purported correlations. J Atmos Sol Terr Phys 65:801–812

    Google Scholar 

  • Lee SH, Reeves JM, Wilson JC, Hunton DE, Viggiano AA, Miller TM, Ballenthin JO, Lait LR (2003) Particle formation by ion nucleation in the upper troposphere and lower stratosphere. Science 301(5641):1886–1989

    Google Scholar 

  • Li J, Cummer SA (2011) Estimation of electric charge in sprites from optical and radio observations. J Geophys Res 116:A01301. https://doi.org/10.1029/2010JA015391

    Google Scholar 

  • Libbrecht KG, Woodward MF (1990) Solar-cycle effects on solar oscillation frequencies. Nature 345:779–782

    Google Scholar 

  • Likholyot A, Lemke K, Hovey JK et al (2007) Mass spectrometric and quantum chemical determination of proton water clustering equilibria. Geochim Cosmochim Acta 71:2436–2447

    Google Scholar 

  • Liou Y-A, Kar SK (2010) Study of cloud-to-ground lightning and precipitation and their seasonal and geographical characteristics over Taiwan. Atmos Res 95:115–122. https://doi.org/10.1016/j.atmosres.2009.08.016

    Google Scholar 

  • Liu C, Williams ER, Zipser EJ, Burns G (2010) Diurnal variations of global thunderstorms and electrified shower clouds and their contribution to the global electrical circuit. J Atmos Sci 67:309–323. https://doi.org/10.1175/2009JAS3248.1

    Google Scholar 

  • Loeb LB (1966) The mechanism of stepped and dart leaders in cloud-to-ground lightning strokes. J Geophys Res 71:4711–4721

    Google Scholar 

  • Lu G, Blakeslee RJ, Li J, Smith DM, Shao X-M, McCaul EW, Buechler DE, Christian HJ, Hall JM, Cummer SA (2010) Lightning mapping observation of a terrestrial gamma-ray flash. Geophys Res Lett 37:L11806. https://doi.org/10.1029/2010GL043494

    Google Scholar 

  • Mach DM, Blakeslee RJ, Bateman MG, BaileyJ C (2009) Electric fields, conductivity, and estimated currents from aircraft over flights of electrified clouds. J Geophys Res 114:D10204. https://doi.org/10.1029/2008JD011495

    Google Scholar 

  • Mach DM, Bateman MG, Blakeslee RJ, Bailey JC (2010) Comparisons of total currents based on storm location, polarity, and flash rates derived from high altitude aircraft over flights. J Geophys Res 115:D0320. https://doi.org/10.1029/2009JD012240

    Google Scholar 

  • Mach DM, Blakeslee RJ, Bateman MG (2011) Global electric circuit implications of combined aircraft storm electric current measurements and satellite-based diurnal lightning statistics. J Geophys Res 116:D05201. https://doi.org/10.1029/2010JD014462

    Google Scholar 

  • Maddams J, Parkin DM, Darby SC (2011) The cancer burden in the United Kingdom in 2007 due to radiotherapy. Int J Cancer 129:2885–2893

    Google Scholar 

  • Maggio CR, Marshall TC, Stolzenburg M (2009) Estimations of charge transferred and energy released by lightning flashes. J Geophys Res 114:D14203. https://doi.org/10.1029/2008JD011506

    Google Scholar 

  • Mallios SA, Pasko VP (2012) Charge transfer to the ionosphere and to the ground during thunderstorms. J Geophys Res 117:A08303. https://doi.org/10.1029/2011JA017061

    Google Scholar 

  • Mansell ER, Ziegler CL (2013) Aerosol effects on simulated storm electrification and precipitation in a two-moment bulk microphysics model. J Atmos Sci 70:2032–2050

    Google Scholar 

  • Mareev EA (2010) Global electric circuit research: achievements and prospects. Phys Usp 53:504–551. https://doi.org/10.3367/UFNe.0180.201005h.0527

    Google Scholar 

  • Mareev EA, Dementyeva SO (2017) The role of turbulence in thunderstorm, snowstorm, and dust storm electrification. J Geophys Res 122:6976–6988. https://doi.org/10.1002/2016JD026150

    Google Scholar 

  • Mareev EA, Volodin EM (2014) Variation of the global electric circuit and Ionospheric potential in a general circulation model. Geophys Res Lett 41:9009–9016. https://doi.org/10.1002/2014GL062352

    Google Scholar 

  • Mareev EA, Yashunin SA, Davydenko SS, Marshall TC, Stolzenburg M, Maggio CR (2008) On the role of transient currents in the global electric circuit. Geophys Res Lett 35:L15810. https://doi.org/10.1029/2008GL034554

    Google Scholar 

  • Markson R (2007) The global circuit intensity: its measurement and variation over the last 50 years. Bull Am Meteorol Soc 88:223–241. https://doi.org/10.1175/BAMS-88-2-223

    Google Scholar 

  • Marsh ND, Svensmark H (2000) Low cloud properties influenced by cosmic rays. Phys Rev Lett 85:5004–5007

    Google Scholar 

  • Marshall TC, Winn WP (1982) Measurements of charge precipitation in a New Mexico thunderstorm, lower positive charge centre. J Geophys Res 87:7141–7157

    Google Scholar 

  • Marshall TC, Stolzenburg M, Maggio CR, Coleman LM, Krehbiel PR, Hamlin T, Thomas RJ, Rison W (2005) Observed electric fields associated with lightning initiation. Geophys Res Lett 32:L03813. https://doi.org/10.1029/2004GL021802

    Google Scholar 

  • McCarthy M, Parks GK (1985) Further observations of X-rays inside thunderstorms. Geophys Res Lett 12:393–396

    Google Scholar 

  • Meehl GA, Warren M, Washington TML, Wigley JM, Arblaster AD (2003) Solar and greenhouse gas forcing and climate response in the twentieth century. J Clim 16:426–444. https://doi.org/10.1175/1520-0442(2003)016<0426:SAGGFA>2.0.CO;2

    Google Scholar 

  • Meehl GA, Arblaster JM, Branstator G, van Loon H (2008) A coupled air–sea response mechanism to solar forcing in the Pacific region. J Clim 21(12):2883–2897

    Google Scholar 

  • Meehl GA et al (2009) Decadal prediction. Bull Am Meteorol Soc 90:1467–1485. https://doi.org/10.1175/2009BAMS2778.1

    Google Scholar 

  • Miousse IR, Koturbash I (2015) The fine LINE: methylation drawing the cancer landscape. Biomed Res Int, article ID 131547. http://dx.doi.org/10.1155/2015/131547

  • Molinski T (2002) Why utilities respect geomagnetically induced currents. J Atmos Sol Terr Phys 64:1765–1778

    Google Scholar 

  • Moretti PF, Cacciani A, Hanslmeier A, Messerotti M, Oliviero M, Otruba Severino WG, Warmuth A (2001) The source of the solar oscillations: convective or magnetic? Astron Astrophys 372:1038–1047. https://doi.org/10.1051/0004-6361:20010588

    Google Scholar 

  • Moss GD, Pasko VP, Liu N, Veronis G (2006) Monte Carlo model for analysis of thermal runaway electrons in streamer tips in transient luminous events and streamer zones of lightning leaders. J Geophys Res 111:A02307. https://doi.org/10.1029/2005JA011350

    Google Scholar 

  • Nicoll KA, Harrison RG (2009) Vertical current flow through extensive layer clouds. J Atmos Sol Terr Phys 71:2040–2046

    Google Scholar 

  • Nicoll KA, Harrison RG (2010) Experimental determination of layer cloud edge charging from cosmic ray ionization. Geophys Res Lett 37:L13802. https://doi.org/10.1029/2010GL043605

    Google Scholar 

  • Nicoll KA et al (2011) Observations of Saharan dust layer electrification. Environ Res Lett 6:014001

    Google Scholar 

  • Nzabarushimana E, Miousse IR, Shao L, Chang J, Allen AR, Turner J, Stewart B, Raber J, Koturbash I (2014) Long-term epigenetic effects of exposure to low doses of 56Fe in the mouse lung. J Radiat Res 55:823–828. https://doi.org/10.1093/jrr/rru010

    Google Scholar 

  • Nzabarushimana E, Prior S, Miousse IR, Pathak R, Allen AR, Latendresse J, Olsen RHJ, Raber J, Hauer-Jensen M, Nelson GA, Koturbash I (2015) Combined exposure to protons and 56Fe leads to over expression of Il13 and reactivation of repetitive elements in the mouse lung. Life Sci Space Res (Amst) 7:1–8. https://doi.org/10.1016/j.lssr.2015.08.001

    Google Scholar 

  • Odzimek A, Lester M, Kubici M (2010) EGATEC: a new high-resolution engineering model of the global atmospheric electric circuit-currents in the lower ionosphere. J Geophys Res 115:D18207. https://doi.org/10.1029/JD013341

    Google Scholar 

  • Owens MJ, Scott CJ, Lockwood M, Barnard L, Harrison RG, Nicoll K, Watt C, Bennett AJ (2014) Modulation of UK lightning by heliospheric magnetic field polarity. Environ Res Lett 9:115009

    Google Scholar 

  • Owens MJ, Scott CJ, Bennett AJ, Thomas SR, Lookwood M, Harrison RG, Lcem MM (2015) Lightning as a space-weather hazards: UK thunderstorm activity modulated by the passage of the heliospheric current sheet. Geophys Res Lett 42:9624–9632. https://doi.org/10.1002/2015GL0066802

    Google Scholar 

  • Parihar VK et al (2015a) Persistent changes in neuronal structure and synaptic plasticity caused by proton irradiation. Brain Struct Funct 220:1161–1171. https://doi.org/10.1007/s00429-014-0709-9

    Google Scholar 

  • Parihar VK et al (2015b) What happens to your brain on the way to Mars. Sci Adv 1(1400256):1–6. https://doi.org/10.1126/sciadv.1400256

    Google Scholar 

  • Parks GK, Mauk BH, Spiger R, Chin J (1981) X-ray enhancements detected during thunderstorm and lightning activities. Geophys Res Lett 8:1176–1179

    Google Scholar 

  • Partamies N (2004) Meso-scale auroral physics from ground-based observations. Ph.D. Thesis, University of Helsinki, Faculty of Science, Department of Physical Sciences

  • Pasko VP, Inan US, Bell TF (1998) Spatial structures of sprites. Geophys Res Lett 25:2123–2126

    Google Scholar 

  • Penki RK, Kamra AK (2013a) Lightning distribution with respect to the monsoon trough position during the Indian summer monsoon season. J Geophys Res 118:4780–4787. https://doi.org/10.1002/jgrd.50382

    Google Scholar 

  • Penki RK, Kamra AK (2013b) The lightning activity associated with the dry and moist convections in the Himalayan regions. J Geophys Res 118:6246–6258. https://doi.org/10.1002/jgrd.50499

    Google Scholar 

  • Petersen WA, Christian HC, Rutledge SA (2005) TRMM observations of the global relationship between ice water content and lightning. Geophys Res Lett 32:L14819. https://doi.org/10.1029/2005GL023236

    Google Scholar 

  • Petersen D, Bailey M, Beasley WH, Hallett J (2008) A brief review of the problem of lightning initiation and a hypothesis of initial lightning leader formation. J Geophys Res 113:D17205. https://doi.org/10.1029/2007JD009036

    Google Scholar 

  • Peterson M, Liu C, Mach D, Deierling W, Kalb C (2015) A method of estimating electric fields above electrified clouds from passive microwave observations. J Atmos Ocean Technol 32:1429–1446. https://doi.org/10.1175/JTECH-D-14-00119.1

    Google Scholar 

  • Peterson M, Deierling W, Liu C, Mach D, Kalb C (2017) A TRMM/GPM retrieval of the total mean generator current for the global electric circuit. J Geophys Res 122:10025–10049. https://doi.org/10.1002/2016JD026336

    Google Scholar 

  • Phelps CT (1974) Positive streamer system intensification and its possible role in lightning initiation. J Atmos Sol Terr Phys 36:103–111

    Google Scholar 

  • Pierce JR, Adams PJ (2009) Uncertainty in global CCN concentrations from uncertain aerosol nucleation and primary emission rates. Atmos Chem Phys 9:1339–1356. https://doi.org/10.5194/acp-9-1339-2009

    Google Scholar 

  • Pinto Neto O, Pinto Pinto IRCA, Jr O (2013) The relationship between thunderstorm and solar activity for Brazil from 1951 to 2009. J Atmos Sol Terr Phys 98:12–21

    Google Scholar 

  • Pirjola R (2002) Geomagnetic effects on ground-based technological systems. Surv Geophys 23:71–90

    Google Scholar 

  • Pirjola R, Kauristie K, Lappalainen H, Viljanen A, Pulkkinen A (2005) Space weather risk. Space Weather 3:S02A02. https://doi.org/10.1029/2004SW000112

    Google Scholar 

  • Plante I, Cucinotta FA (2008) Ionization and excitation cross sections for the interaction of HZE particles in liquid water and application to Monte Carlo simulation of radiation tracks. New J Phys 10:125020

    Google Scholar 

  • Price C (2009) Will a drier climate result in more lightning? Atmos Res 91:479–484

    Google Scholar 

  • Price C (2013) Lightning applications in weather and climate research. Surv Geophys 34:755–767. https://doi.org/10.1007/s10712-012-9218-7

    Google Scholar 

  • Price C, Asfur M (2006) Can lightning observation be used as an indicator of upper tropospheric water vapour variability? BAMS Am Meteorol Soc 87:291–298. https://doi.org/10.1175/BAMS-87-3-291

    Google Scholar 

  • Price C, Federmesser B (2006) Lightning-rainfall relationships in Mediterranean winter thunderstorms. Geophys Res Lett 33:L07813. https://doi.org/10.1029/2005GL024794

    Google Scholar 

  • Price C, Rind D (1992) A simple lightning parameterization for calculating global lightning distribution. J Geophys Res 97:9919–9933. https://doi.org/10.1029/92JD00719

    Google Scholar 

  • Ptashnik IV (2008) Evidence for the contribution of water dimers to the near-IR water vapour self continuum. J Quant Spectrosc Radiat Transf 109:831–852. https://doi.org/10.1016/j.jqsrt.2007.09.004

    Google Scholar 

  • Pulkkinen A, Lindahl S, Viljanen A, Pirjola R (2005) Geomagnetic storm of 29–31 October 2003: geomagnetically induced currents and their relation to problems in the Swedish high voltage power transmission system. Space Weather 3:S08C03. https://doi.org/10.1029/2004SW000123

    Google Scholar 

  • Qie X, Toumi R, Yuan T (2003) Lightning activities on the Tibetan Plateau as observed by the lightning imaging sensor. J Geophys Res 108:4551. https://doi.org/10.1029/2002JD003304

    Google Scholar 

  • Qie X, Wu X, Yuan T, Bian J, Lu D (2014) Comprehensive pattern of deep convective systems over the Tibetan Plateau-South Asian monsoon region based on TRMM data. J Clim 27:6612–6626. https://doi.org/10.1175/JCLI-D-14-00076.1

    Google Scholar 

  • Rakov VA, Uman MA (2003) Lightning—physics and effects. Cambridge University Press, Cambridge

    Google Scholar 

  • Ramesh Kumar P, Kamra AK (2010) Lightning activity variations over three islands in a tropical monsoon region. Atmos Res 98:309–316. https://doi.org/10.1016/j.atmosres.2010.07.014

    Google Scholar 

  • Ramesh Kumar P, Kamra AK (2012a) The spatiotemporal variability of lightning activity in the Himalayan foothills. J Geophys Res 117:D24201. https://doi.org/10.1029/2012JD018246

    Google Scholar 

  • Ramesh Kumar P, Kamra AK (2012b) Land–sea contrast in lightning activity over the sea and peninsular regions of South/Southeast Asia. Atmos Res 118:52–67

    Google Scholar 

  • Ramesh Kumar P, Kamra AK (2012c) Variability of lightning activity in South/Southeast Asia during 1997–98 and 2002–03 El Nino/La Nina events. Atmos Res 118:84–102

    Google Scholar 

  • Ranalkar MR, Chaudhuri HS (2009) Seasonal variation of lightning activity over the Indian subcontinent. Meteorol Atmos Phys 104:125–134. https://doi.org/10.1007/s00703-009-0026-7

    Google Scholar 

  • Ranalkar MR, Pawar SD, Pradeep Kumar P (2017) Characteristics of lightning activity in tropical cyclones developed over North Indian Ocean basin during 2010–2015. Atmos Res 187:16–32

    Google Scholar 

  • Rasmusson EM, Carpenter TH (1982) Variations in tropical sea surface temperature and surface wind fields associated with Southern Ocillation/El-Nino. Mon Weather Rev 110:354–384

    Google Scholar 

  • Rasmusson EM, Wallace JM (1983) Meteorological aspects of the El Nino/Southern Oscillation. Science 222:1195–1202

    Google Scholar 

  • Reitz G (1993) Radiation environment in the stratosphere. Radiat Prot Dosim 48:2–65

    Google Scholar 

  • Renno NO, Abreu VJ, Koch J, Smith PH et al (2004) MATADOR 2002—a pilot field experiment on convective plumes and dust devils. J Geophys Res 109:E07001. https://doi.org/10.1029/2003JE002219

    Google Scholar 

  • Rind D, Lean J, Lerner J, Lonergan P, Leboissetier A (2008) Exploring the stratospheric/tropospheric response to solar forcing. J Geophys Res 113:D24103. https://doi.org/10.1029/2008JD010114

    Google Scholar 

  • Roble RG, Tzur I (1986) The global atmospheric-electrical circuit. In: The Earth’s electrical environment-study in geophysics. National Academy Press, Washington

  • Rodríguez-Paredes M, Esteller M (2011) Cancer epigenetics reaches mainstream oncology. Nat Med 17:330–339. https://doi.org/10.1038/nm.2305

    Google Scholar 

  • Rohrer F, Berresheim H (2006) Strong correlation between levels of tropospheric hydroxyl radicals and solar ultraviolet radiation. Nature 442:184–187. https://doi.org/10.1038/nature04924

    Google Scholar 

  • Rosenfeld D, Lohman U, Raga GB, O’Dowd CD, Kumala M, Fuzzi S, Reissell A, Andrease MO (2008) Flood or drought: how do aerosols affect precipitation? Science 321:1309–1313

    Google Scholar 

  • Rossow WB, Cairns B (1995) Monitoring changes of clouds. Clim Change 31:175–217. https://doi.org/10.1007/BF01095151

    Google Scholar 

  • Rusanov AI, Kuzmin VL (1977) Electric field influence on the surface tension of polar liquid. Kolloidny J 39:388–390

    Google Scholar 

  • Rycroft MJ (2006) Electrical processes coupling the atmosphere and ionosphere: an overview. J Atmos Sol Terr Phys 68:445–456

    Google Scholar 

  • Rycroft MJ, Harrison RG (2012) Electromagnetic atmosphere-plasma coupling: the global atmospheric electric circuit. Space Sci Rev 168:363–384. https://doi.org/10.1007/s11214-011-9830-8

    Google Scholar 

  • Rycroft MJ, Odzimek A (2009) The impact of lightning flashes and sprites on the Earth’s global electric circuit: an overview of recent modeling results. In: Crosby NB, Huang T-Y, Rycroft MJ (eds) Coupling of thunderstorms and lightning discharges to near-earth space. American Institute of Physics Conference Proceedings, CP 1118, pp 124–135

  • Rycroft MJ, Odzimek A (2010) Effects of lightning and sprites on the ionospheric potential, and threshold effects on sprite initiation, obtained using an analog model of the global atmospheric electric circuit. J Geophys Res 115:A00E37. https://doi.org/10.1029/2009JA014758

    Google Scholar 

  • Rycroft MJ, Israelsson S, Price C (2000) The global atmospheric electric circuit, solar activity and climate change. J Atmos Sol Terr Phys 62:1563–1576. https://doi.org/10.1016/S1364-6826(00)00112-7

    Google Scholar 

  • Rycroft MJ, Odzimek A, Arnold NF, Fullekrug M, Kulak A, Neubert T (2007) New model simulations of the global atmospheric electric circuit driven by thunderstorms and electrified shower clouds: the role of lightning and sprites. J Atmos Sol Terr Phys 69:445–456. https://doi.org/10.1016/j.jastp.2007.09.004

    Google Scholar 

  • Rycroft MJ, Harrison RG, Nicoll KA, Mareev EA (2008) An overview of Earth’s global electric circuit and atmospheric conductivity. Space Sci Rev. https://doi.org/10.1007/11214-008-9368-6

    Google Scholar 

  • Rycroft MJ, Nicoll KA, Aplin KL, Harrison RG (2012) Recent advances in global electric circuit coupling between the space environment and the troposphere. J Atmos Sol Terr Phys 90–91:199–211

    Google Scholar 

  • Saha U, Siingh D, Kamra AK, Galanaki E, Mitra A, Singh RP, Singh AK, Chakraborty S, Singh R (2017a) On the association of lightning activities and projected change in climate over the Indian sub-continent. Atmos Res 183:173–190

    Google Scholar 

  • Saha U, Siingh D, Midya SK, Singh AK, Singh RP, Kumar S (2017b) Spatio-temporal variability of lightning and connectivity activity over South/South-East Asia with an emphasis during El Nino and La Nina. Atmos Res 197:150–166

    Google Scholar 

  • Sartor JD (1967) The role of particle interactions in the distribution of electricity in thunderstorms. J Atmos Sci 24:601–615

    Google Scholar 

  • Sastry S (2005) Water: ins and outs of ice nucleation. Nature 438:746

    Google Scholar 

  • Sato T (2016) Evaluation of world population-weighted effective dose due to cosmic ray exposure. Sci Rep 6:33932. https://doi.org/10.1038/srep33932

    Google Scholar 

  • Sato M, Fukunishi H (2005) New evidence for a link between lightning activity and tropical upper cloud coverage. Geophys Res Lett 32:L12807. https://doi.org/10.1029/2005GL022865

    Google Scholar 

  • Sato M, Takahashi Y, Yoshida A, Adachi T (2008) Global distribution of intense lightning discharges and their seasonal variations. J Phys D Appl Phys 41:234011. https://doi.org/10.1088/0022-3727/41/23/234011

    Google Scholar 

  • Sátori G, Mushtak V, Williams E (2008) Schumann resonance signatures of global lightning activity. In: Betz H-D, Schumann U, Laroche P (eds) Lightning: principles, instruments and applications. Springer, Berlin

    Google Scholar 

  • Sátori G, Williams E, Lemperger I (2009) Variability of global lightning activity on the ENSO time scale. Atmos Res 91:500–507

    Google Scholar 

  • Saunders C (2008) Charge separation mechanisms in clouds. Space Sci Rev 137:335–353. https://doi.org/10.1007/s11214-008-9345-0

    Google Scholar 

  • Schlegel K, Diendorfer G, Thern S, Schmidt M (2001) Thunderstorms, lightning and solar activity—middle Europe. J Atmos Sol Terr Phys 63:1705–1713

    Google Scholar 

  • Schumann U, Huntrieser H (2007) The global lightning-induced nitrogen oxides source. Atmos Chem Phys 7:3823–3907. www.atmos-chem-phys.net/7/3823/2007

    Google Scholar 

  • Scott CJ, Harrison RG, Owens MJ, Lockwood M, Barnard L (2014) Evidence for solar wind modulation of lightning. Environ Res Lett 9:055004

    Google Scholar 

  • Sen AK (1963) Integrated field intensity of atmospherics in relation to local thunderstorms. J Atmos Sol Terr Phys 25:306–308

    Google Scholar 

  • Shao X-M, Hamlin T, Smith DM (2010) A closer examination of terrestrial gamma-ray flash-related lightning processes. J Geophys Res 115:A00E30. https://doi.org/10.1029/2009JA014835

    Google Scholar 

  • Shea MA, Smart DF (2000) Cosmic ray implications for human health. Space Sci Rev 93:187–205

    Google Scholar 

  • Sherwood SC, Phillips VTJ, Wettlaufer JS (2006) Small ice crystals and the climatology of lightning. Geophys Res Lett 33:L05804. https://doi.org/10.1029/2005GL025242

    Google Scholar 

  • Shindell DT, Faluvegi G, Unger N, Aguilar E, Schmidt GA, Koch DM, Bauer SE, Miller RL (2006) Simulations of preindustrial, present-day, and 2100 conditions in the NASA GISS composition and climate model G-PUCCINI. Atmos Chem Phys 6:4427–4459

    Google Scholar 

  • Siingh D, Singh RP (2010) The role of cosmic rays in the earth atmospheric process. Pramana J Phys 74:153–164

    Google Scholar 

  • Siingh D, Singh RP, Kamra AK, Gupta PN, Singh R, Gopalakrishnan V, Singh AK (2005) Review of electromagnetic coupling between the earth atmosphere and space environment. J Atmos Sol Terr Phys 67:637–658

    Google Scholar 

  • Siingh D, Gopalakrishnan V, Singh RP, Kamra AK, Singh S, Pant V, Singh R, Singh AK (2007) The atmospheric global electric circuit: an overview. Atmos Res 84:91–110. https://doi.org/10.1016/j.atmosres.2006.05.005

    Google Scholar 

  • Siingh D, Singh AK, Patel RP, Singh R, Singh RP, Vennadhari B, Mukherjee M (2008) Thunderstorm, lightning, sprites and magnetospheric whistler-mode waves. Surv Geophys 29:499–551

    Google Scholar 

  • Siingh D, Singh RP, Singh Ashok K, Kulkarni MN, Gautam AS, Singh Abhay K (2011) Solar activity, lightning and climate. Surv Geophys 32:659–703. https://doi.org/10.1007/s10712-011-9127-1

    Google Scholar 

  • Siingh D, Singh RP, Singh AK, Kumar S, Kulkarni MN, Singh Abhay K (2012) Discharges in the stratosphere and mesosphere. Space Sci Rev 169:73–121. https://doi.org/10.1007/s11214-012-9906-0

    Google Scholar 

  • Siingh D, Gautam AS, Kamra AK, Komsaare K (2013a) Nucleation events for the formation of charged aerosol particles at tropical, station—preliminary results. Atmos Res 132–133:239–252. https://doi.org/10.1016/j.atmosres.2013.05.024

    Google Scholar 

  • Siingh D, Kumar PR, Kulkarni MN, Singh RP, Singh AK (2013b) Lightning, convective rain and solar activity—over the South/Southeast Asia. Atmos Res 120–121:99–111. https://doi.org/10.1016/j.atmosres.2012.07.026

    Google Scholar 

  • Siingh D, Buchunde PS, Singh RP, Nath A, Kumar S, Ghodpage RN (2014) Lightning and convective rain study at different parts of India. Atmos Res 137:35–48. https://doi.org/10.1016/j.atmosres.2013.09.018

    Google Scholar 

  • Siingh D, Singh RP, Kumar S, Dharmaraj T, Singh AK, Singh Ashok K, Patil MN, Singh S (2015a) Lightning and middle atmospheric discharges in the atmosphere. J Atmos Sol Terr Phys 134:78–101

    Google Scholar 

  • Siingh D, Buchunde PS, Ghandi H, Patil MN, Singh R, Singh S, Singh RP (2015b) Lightning and convective rain over Indian Peninsula and Indo-China peninsula. Adv Space Res 55:1085–1103. https://doi.org/10.1016/j.asr.2014.11.014

    Google Scholar 

  • Siingh D, Dharmaraj T, Ramesh Kumar P, Singh R, Kumar S, Chimthalu GR, Patil MN, Singh RP (2017) Variability of lightning, convective rain and solar activity study over South/Southeast Asia during ENSO episode for the period the period of 1998–2010. J Indian Geophys Union 21:401–441

    Google Scholar 

  • Sikka DR, Gadgil S (1980) On the maximum cloud zone and the ITCZ over Indian longitude during the southwest monsoon. Mon Weather Rev 108:1840–1853

    Google Scholar 

  • Singh DK, Singh RP, Kamra AK (2004) The electrical environment of the Earth’s Atmosphere: a review. Space Sci Rev 113:375–408

    Google Scholar 

  • Singh AK, Siingh D, Singh RP (2011) Impact of galactic cosmic rays on Earth’s atmosphere and human health. Atmos Environ 45:3806–3818. https://doi.org/10.1016/j.atmosenv.2011.04.027

    Google Scholar 

  • Singh R, Maurya AK, Chanrion O, Neubert T, Cummer SA, Mlynarczyk J, Cohen MB, Siingh D, Kumar S (2017) Assessment of unusual gigantic jets observed during the monsoon season: first observations from Indian subcontinent. Nat Sci Rep 7:16436. https://doi.org/10.1038/541598-017-16696-s

    Google Scholar 

  • Smith DM et al (2011) A terrestrial gamma ray flash observed from an aircraft. J Gephys Res 116:D20124. https://doi.org/10.1029/2011JD016252

    Google Scholar 

  • Splitt ME, Lazarus SM, Barnes D, Dwyer JR, Rassoul HK, Smith DM, Hazelton B, Grefenstette B (2010) Thunderstorm characteristics associated with RHESSI identified terrestrial gamma ray flashes. J Geophys Res 115:A00E38. https://doi.org/10.1029/2009JA014622

    Google Scholar 

  • Stanley MA, Shao X-M, Smith DM, Lopez LI, Pongratz MB, Harlin JD, Stock M, Regan A (2006) A link between terrestrial gamma-ray flashes and intracloud lightning discharges. Geophys Res Lett 33:L06803. https://doi.org/10.1029/2005GL025537

    Google Scholar 

  • Stolzenburg M, Marshall TC (2009) Electric field and charge structure in lightning-producing clouds. In: Betz H-D, Schumann U, Laroche P (eds) Lightning: principles, instruments and applications. Springer, Berlin, pp 57–82

    Google Scholar 

  • Stolzenburg M, Marshall TC, Rust WD, Bruning E, MacGorman DR, Hamlin T (2007) Electric field values observed near lightning flash initiations. Geophys Res Lett 34:L04804. https://doi.org/10.1029/2006GL028777

    Google Scholar 

  • Stozhkov YI (2003) The role of cosmic rays in the atmospheric processes. J Phys G Nucl Part Phys 29:913–923

    Google Scholar 

  • Stozhkov YI, Svirzhevsky NS, Makhmutov VS et al (2001) Long term cosmic ray observations in the atmosphere. In: Proceedings of 27th international cosmic ray conference, Hamburg, vol 9, pp 3883–3886

  • Stringfellow MF (1974) Lightning incidence in Britain and the solar cycle. Nature 249:332–333

    Google Scholar 

  • Sun B, Bradley RS (2002) Solar influences on cosmic rays and cloud formation: a reassessment. J Geophys Res 107:4211. https://doi.org/10.1029/2001JD000560

    Google Scholar 

  • Sun B, Bradley RS (2004) Reply to comment by N.D. Marsh and H. Svensmark on “Solar influence on cosmic rays and cloud formation: a reassessment”. J Geophys Res 109:D14206. https://doi.org/10.1029/2003JD004479

    Google Scholar 

  • Suszcynsky DM, Roussel-Dupre R, Shaw G (1996) Ground-based search for X rays generated by thunderstorms and lightning. J Geophys Res 101:23505–23516

    Google Scholar 

  • Svensmark H (1998) Influence of cosmic rays on Earth’s climate. Phys Rev Lett 81:5027–5030

    Google Scholar 

  • Svensmark H, Friis-Christensen E (1997) Variation of cosmic rays fluxes and global cloud coverage—a missing link in solar-climate relationship. J Atmos Sol Terr Phys 59:1225–1232

    Google Scholar 

  • Svensmark H, Torsten B, Svensmark J (2009) Cosmic ray decreases affect atmospheric aerosols and clouds. Geophys Res Lett 36:L15101. https://doi.org/10.1029/2009GL038429

    Google Scholar 

  • Takahashi T (1978) Riming electrification a charge generation mechanism in thunderstorm. J Atmos Sci 35:1536–1541

    Google Scholar 

  • Tavani M et al (2011) Terrestrial gamma-ray flashes as powerful particle accelerators. Phys Rev Lett 106:018501

    Google Scholar 

  • Taylor G (1964) The disintegration of water drops in an electric field. Proc R Soc Lond A 280:383–397

    Google Scholar 

  • Tessendorf SA, Wiens KC, Rutledge SA (2007) Radar and lightning observations of the 3 June 2000 electrically inverted storm from STEPS. Mon Weather Rev 135:3665–3681. https://doi.org/10.1175/2006MWR1953.1

    Google Scholar 

  • Thaddeus P, Gottlieb CA, Gupta H et al (2008) Laboratory and astronomical detection of the negative molecular ion C3N. Astrophys J 677:1132–1139. https://doi.org/10.1086/528947

    Google Scholar 

  • Thomson AWP (2007) Geomagnetic hazards. In: Gubbins D, Herrero-Bervera E (eds) Encyclopaedia of geomagnetism and paleomagnetism. Springer, Dordrect, pp 316–319. ISBN-13: 978-1-4020-3992-8

    Google Scholar 

  • Thomson DJ, Lanzerotti LJ, Medford LV, Maclennan CG, Meloni A, Gregori GP (1986) Study of tidal periodicities using a transatlantic telecommunications cable. Geophys Res Lett 13:525–528

    Google Scholar 

  • Thomson DJ, Lanzerotti LJ, Maclennan CG, Medford LV (1995) Ocean cable measurements of the tsunami signal from the 1992 Cape Mendocino earthquake. Pure Appl Geophys 144:427–440

    Google Scholar 

  • Thomson DJ, Lanzerotti LJ, Vernon LV, Lessard MR, Smith LTP (2007) Solar modal structure of the engineering environment. Proc IEEE 95:1085–1132

    Google Scholar 

  • Thomson AWP et al (2010) Present day challenges in understanding the geomagnetic hazard to national power grids. Adv Space Res 45:1182–1190. https://doi.org/10.1029/2004JD005381

    Google Scholar 

  • Tinsley BA (2000) Influence of solar wind on the global electric circuit, and inferred effects on cloud microphysics, temperature and dynamics in the troposphere. Space Sci Rev 94:231–258

    Google Scholar 

  • Tinsley BA (2004) Scavenging of condensation nuclei in clouds: dependence of sign of electro-scavenging effect on droplet and CCN sizes. In: Proceeding, international conference on clouds and precipitation, p 248, IAMAS, Bologna, 18–23 July 2004

  • Tinsley BA (2008) The global atmospheric electric circuit and its effects on cloud microphysics. Rep Prog Phys 71:066801. https://doi.org/10.1088/0034-4885/71/6/06

    Google Scholar 

  • Tinsley BA, Zhou L (2015) Parameterization of aerosol scavenging due to atmospheric ionization. J Geophys Res 120:8389–8410. https://doi.org/10.1002/2014JD023016

    Google Scholar 

  • Tinsley BA, Rohrbaugh RP, Hei M (2001) Electro-scavenging in clouds with broad droplets size distributions and weak electrification. Atmos Res 115:59–60

    Google Scholar 

  • Tinsley BA, Burns GB, Zhou L (2007) The role of the global electric circuit in solar and internal forcing of clouds and climate. Adv Space Res 40:1126–1139

    Google Scholar 

  • Torii T, Takeishi M, Hosono T (2002) Observation of gamma-ray dose increase associated with winter thunderstorm and lightning activity. J Geophys Res 107:4324. https://doi.org/10.1029/2001JD000938

    Google Scholar 

  • Torii T, Nishijima T, Kawasaki Z-I, Sugita T (2004) Downward emission of runaway electrons and bremsstrahlung photons in thunderstorm electric fields. Geophys Res Lett 31:L05113. https://doi.org/10.1029/2003GL019067

    Google Scholar 

  • Torii T, Sugita T, Tanabe S, Kimura Y, Kamogawa M, Yajima K, Yasuda H (2009) Gradual increase of energetic radiation associated with thunderstorm activity at the top of Mt. Fuji. Geophys Res Lett 36:L13804. https://doi.org/10.1029/2008GL037105

    Google Scholar 

  • Toumi R, Qie X (2004) Seasonal variation of lightning on the Tibetan Plateau: A Spring anomaly? Geophys Res Lett 31:L04115. https://doi.org/10.1029/2003GL0189

    Google Scholar 

  • Toumi R, Haigh JD, Law KS (1996) A tropospheric ozone lightning climate feedback. Geophys Res Lett 23:1037–1040. https://doi.org/10.1029/96GL00944

    Google Scholar 

  • Tripathi SN (2000) Removal of charged aerosols. Ph.D. Thesis, The University of Reading

  • Tripathi SN, Harrison RG (2001) Scavenging of electrified radioactive aerosols. Atmos Environ 35:5817–5821

    Google Scholar 

  • Tripathi SN, Harrison RG (2002) Enhancement of contact nucleation by scavenging of charged aerosol particles. Atmos Res 62:57–70

    Google Scholar 

  • Tripathi SN, Michael M, Harrison RG (2008) Profiles of ion and aerosol interactions in planetary atmospheres. Space Sci Rev 137:193–211

    Google Scholar 

  • Tsonis AA (2013) Geoengineering carries unknown consequences. Phys Today 66:8–9

    Google Scholar 

  • Tsuchiya H et al (2007) Detection of high-energy gamma rays from winter thunder-639 clouds. Phys Rev Lett 99:165002. https://doi.org/10.1103/PhysRevLett.99.165002

    Google Scholar 

  • Tsuchiya H et al (2009) Observation of an energetic radiation burst from mountain-top 641 thunderclouds. Phys Rev Lett 102:255003. https://doi.org/10.1103/PhysRevLett.102.255003

    Google Scholar 

  • Tsuchiya H et al (2011) Long-duration g ray emissions from 2007 and 2008 winter thunderstorms. J Geophys Res 116:D09113. https://doi.org/10.1029/2010JD015161

    Google Scholar 

  • Turco RP, Yu FQ, Zhao JX (2000) Tropospheric sulfate aerosol formation via ion–ion recombination. J Air Waste Manag Assoc 50(3):902

    Google Scholar 

  • van der Velde OA, Bór J, Li J, Cummer SA, Arnone E, Zanotti F, Füllekrug M, Haldoupis C, NaitAmor S, Farges T (2010) Multi-instrumental observations of a positive gigantic jet produced by a winter thunderstorm in Europe. J Geophys Res 115:D24301. https://doi.org/10.1029/2010JD014442

    Google Scholar 

  • van Loon H, Meehl GA, Shea DJ (2007) Coupled air–sea response to solar forcing in the Pacific region during northern winter. J Geophys Res 112(D2):D02108. https://doi.org/10.1029/2006JD007378

    Google Scholar 

  • Viggiano AA, Arnold F (1995) Ion chemistry and composition of the atmosphere. In: Volland H (ed) Handbook of atmospheric electrodynamics. CRC Press, Boca Raton, p 1

    Google Scholar 

  • Vonnegut B (1963) Some facts and speculations concerning the origin and role of thunderstorm electricity. Meteorol Monogr 5:224

    Google Scholar 

  • Wang M, Panner JE (2009) Aerosol indirect forcing in a global model with particle nucleation. Atmos Chem Phys 9:239–260. https://doi.org/10.5194/acp-9-239-2009

    Google Scholar 

  • Weckwerth TM, Parsons DB (2006) A review of convection initiation and motivation for IHOP_2002. Mon Weather Rev 134:5–22

    Google Scholar 

  • Weigel C, Schmezer P, Plass C, Popanda O (2015) Epigenetics in radiation-induced fibrosis. Oncogene 34:2145–2155. https://doi.org/10.1038/onc.2014.145

    Google Scholar 

  • Williams ER (1985) Large-scale charge separation in thunderclouds. J Geophys Res 90:6013–6025

    Google Scholar 

  • Williams ER (1992) The Schumann resonance: a global thermometer. Science 256:1184–1187. https://doi.org/10.1126/science.256.5060.1184

    Google Scholar 

  • Williams ER (1994) Global circuit response to seasonal variations in global surface air temperature. Mon Weather Rev 122:1917–1929

    Google Scholar 

  • Williams ER (1999) Global circuit response to temperature on various time scales: a status report. In: Hayakawa M (ed) Atmospheric and ionospheric phenomenon associated with earthquakes. Terra Science Publishing Co., Tokyo

    Google Scholar 

  • Williams ER (2001) Sprites, elves, and glow discharge tubes. Phys Today 54:41–47

    Google Scholar 

  • Williams ER (2005) Lightning and climate: a review. Atmos Res 76:272–287

    Google Scholar 

  • Williams ER (2009) The global electrical circuit: a review. Atmos Res 91:140–152

    Google Scholar 

  • Williams ER, Mareev E (2014) Recent progress on the global electrical circuit. Atmos Res 135–136:208–227. https://doi.org/10.1016/j.atmosres.2013.05.015

    Google Scholar 

  • Williams ER, Renno N (1993) An analysis of the conditional instability of the tropical atmosphere. Mon Weather Rev 121:21–36

    Google Scholar 

  • Williams ER, Stanfill S (2002) The physical origin of the land–ocean contrast in lightning activity. C R Phys 3:1277–1292. https://doi.org/10.1016/S1631-0705(02)01407-X

    Google Scholar 

  • Williams ER, Geotis SG, Renno N, Rutledge SA, Rasmussen E, Rickenback T (1992) A radar and electrical study of tropical “hot towers”. J Atmos Sci 49:1386–1395

    Google Scholar 

  • Williams ER et al (2002) Contrasting convective regimes over the Amazon: implications for cloud electrification. J Geophys Res 107(20):8082. https://doi.org/10.1029/2001JD000380

    Google Scholar 

  • Williams ER, Chan T, Boccippio D (2004) Islands as miniature continents: another look at the land–ocean lightning contrast. J Geophys Res 109:D16206. https://doi.org/10.1029/2003JD003833

    Google Scholar 

  • Wilson CTR (1916) On some determinations of the sign and magnitude of electric discharges in lightning flashes. Proc R Soc Lond Ser A 92:555–574

    Google Scholar 

  • Wilson CTR (1920) Investigations on lightning discharges and on the electric field of thunderstorms. Philos Trans R Soc Lond Ser A 221:73–115

    Google Scholar 

  • Wilson CTR (1925) The electric field of a thunderstorm and some of its effects. Proc R Soc Lond 37:32D

    Google Scholar 

  • Wilson CTR (1929) Some thundercloud problems. J Frankl Inst 208:1–12. https://doi.org/10.1016/S0016-0032(29)90935-2

    Google Scholar 

  • Woodard MF, Noyes RW (1985) Change of solar oscillation eigenfrequencies with the solar cycle. Nature 318:449–450

    Google Scholar 

  • Xu W, Celestin S, Pasko VP (2012) Source altitudes of terrestrial gamma-ray flashes produced by lightning leaders. Geophys Res Lett 39:L08801. https://doi.org/10.1029/2012GL051351

    Google Scholar 

  • Xu W, Celestin S, Pasko VP (2015) Optical emissions associated with terrestrial gamma ray flashes. J Geophys Res 120:13551370. https://doi.org/10.1002/2014JA020425

    Google Scholar 

  • Yair Y (2008) Charge generation and separation processes. Space Sci Rev 137:119–131. https://doi.org/10.1007/s11214-008-9348-x

    Google Scholar 

  • Yarnold J, Brotons MC (2010) Pathogenetic mechanisms in radiation fibrosis. Radiother Oncol 97:149–161. https://doi.org/10.1016/j.radonc.2010.09.002

    Google Scholar 

  • Yoshida S, Morimoto T, Ushio T, Kawasaki Z (2007) ENSO and convective activities in Southeast Asia and western Pacific. Geophys Res Lett 34:L21806. https://doi.org/10.1029/2007GL030758

    Google Scholar 

  • Yu F (2002) Altitude variations of cosmic rays induced production of aerosols: implications for global cloudiness and climate. J Geophys Res. https://doi.org/10.1029/2001JA000248

    Google Scholar 

  • Yu F, Luo G (2009) Simulation of particle size distribution with a global aerosol model: contribution of nucleation to aerosol and CCN number concentration. Atmos Chem Phys 9:7691–7710. https://doi.org/10.5194/acp-9-7691-2009

    Google Scholar 

  • Yu F, Turco RP (2000) Ultrafine aerosol formation via ion-mediated nucleation. Geophys Res Lett 27:883–886

    Google Scholar 

  • Yu F, Turco RP (2001) From molecular clusters to nanoparticles: the role of ambient ionization in tropospheric aerosol formation. J Geophys Res 106:4797–4814

    Google Scholar 

  • Yuan T, Remer L, Pickering KE, Yu H (2011) Observational evidence of aerosol enhancement of lightning activity and convective invigoration. Geophys Res Lett 38:L04701. https://doi.org/10.1029/2010GL046052

    Google Scholar 

  • Zhou L, Tinsley BA (2007) Production of space charge at the boundaries of layer clouds. J Geohpys Res 112:D11203. https://doi.org/10.1029/2006JD007998

    Google Scholar 

  • Zhou L, Tinsley BA (2010) Global circuit model with clouds. J Atmos Sci 67:1143–1156

    Google Scholar 

  • Zipser EJ (1994) Deep cumulonimbus cloud system in the tropics with and without lightning. Mon Weather Rev 122:1837–1851. https://doi.org/10.1175/1520-0493(1994)122<1837:DCCSIT>2.0.CO;2

    Google Scholar 

Download references

Acknowledgements

This work is supported under the collaboration program of IITM, Pune, and BHU, Varanasi. Indian Institute of Tropical Meteorology Pune is funded by Ministry of Earth Sciences (MoES). AKK acknowledges the support under the INSA Honorary Scientist Program. The authors wish to thank the anonymous reviewers for their suggestions which helped to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devendraa Siingh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Siingh, D., Singh, R.P. et al. Lightning Discharges, Cosmic Rays and Climate. Surv Geophys 39, 861–899 (2018). https://doi.org/10.1007/s10712-018-9469-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-018-9469-z

Keywords

Navigation