Surveys in Geophysics

, Volume 36, Issue 6, pp 743–772 | Cite as

Science and User Needs for Observing Global Mass Transport to Understand Global Change and to Benefit Society

  • Roland Pail
  • Rory Bingham
  • Carla Braitenberg
  • Henryk Dobslaw
  • Annette Eicker
  • Andreas Güntner
  • Martin Horwath
  • Eric Ivins
  • Laurent Longuevergne
  • Isabelle Panet
  • Bert Wouters
  • IUGG Expert Panel


Satellite gravimetry is a unique measurement technique for observing mass transport processes in the Earth system on a global scale, providing essential indicators of both subtle and dramatic global change. Although past and current satellite gravity missions have achieved spectacular science results, due to their limited spatial and temporal resolution as well as limited length of the available time series numerous important questions are still unresolved. Therefore, it is important to move from current demonstration capabilities to sustained observation of the Earth’s gravity field. In an international initiative performed under the umbrella of the International Union of Geodesy and Geophysics, consensus on the science and user needs for a future satellite gravity observing system has been derived by an international panel of scientists representing the main fields of application, i.e., continental hydrology, cryosphere, ocean, atmosphere and solid Earth. In this paper the main results and findings of this initiative are summarized. The required target performance in terms of equivalent water height has been identified as 5 cm for monthly fields and 0.5 cm/year for long-term trends at a spatial resolution of 150 km. The benefits to meet the main scientific and societal objectives are investigated, and the added value is demonstrated for selected case studies covering the main fields of application. The resulting consolidated view on the required performance of a future sustained satellite gravity observing system represents a solid basis for the definition of technological and mission requirements, and is a prerequisite for mission design studies of future mission concepts and constellations.


Mass transport Earth system science Satellite gravimetry Sustained observation Climate change 



The contributions by more than 70 international scientists to this project initiative is highly acknowledged. We also acknowledge the valuable comments of two anonymous reviewers.


  1. Alley WM, Konikow LF (2015) Bringing GRACE down to earth. Ground Water Tech Comment. doi: 10.1111/gwat.12379 Google Scholar
  2. Bingham RJ, Hughes CW (2009) The signature of the Atlantic meridional overturning circulation in sea level along the east coast of North America. Geophys Res Lett 36:L02603. doi: 10.1029/2008GL036215 CrossRefGoogle Scholar
  3. Bingham RJ, Knudsen P, Andersen O, Pail R (2011) An initial estimate of the North Atlantic steady-state geostrophic circulation from GOCE. Geophys Res Lett 38:L01606. doi: 10.1029/2010GL045633 CrossRefGoogle Scholar
  4. Boening C, Willis JK, Landerer FW, Nerem RS, Fasullo J (2012) The 2011 La Niña: so strong, the oceans fell. Geophys Res Lett 39:L19602. doi: 10.1029/2012GL053055 CrossRefGoogle Scholar
  5. Brockmann JM, Zehentner N, Höck E, Pail R, Loth I, Mayer-Gürr T, Schuh W-D (2014) EGM TIM RL05: an independent geoid with centimeter accuracy purely based on the GOCE mission. Geophys Res Lett 41(22):8089–8099. doi: 10.1002/2014GL061904 CrossRefGoogle Scholar
  6. Chambers DP, Wahr J, Tamisiea ME, Nerem RS (2010) Ocean mass from GRACE and glacial isostatic adjustment. J Geophys Res (Solid Earth) 115:B11415. doi: 10.1029/2010JB007530 CrossRefGoogle Scholar
  7. Drinkwater MR, Floberghagen R, Haagmans R, Muzi D, Popescu A (2003) GOCE: ESA’s first Earth Explorer Core mission. In: Beutler G, Drinkwater MR, Rummel R, von Steiger R (eds) Earth gravity field from space—from sensors to earth sciences, space sciences series of ISSI, 17:419–432, Kluwer, Dordrecht, ISBN: 1-4020-1408-2Google Scholar
  8. Eicker A, Schumacher M, Kusche J, Döll P, Müller Schmied H (2014) Calibration/data assimilation approach for integrating GRACE data into the WaterGAP global hydrology model (WGHM) using an ensemble kalman filter: first results. Surv Geophys 35(6):1285–1309. doi: 10.1007/s10712-014-9309-8 CrossRefGoogle Scholar
  9. ESA (2010) Assessment of a next generation mission for monitoring the variations of earth’s gravity. Final Report, ESTEC Contract No. 22643/09/NL/AF,
  10. ESA (2011) Assessment of a next generation gravity mission to monitor the variations of earth’s gravity field. Final Report, ESTEC Contract No. 22672/09/NL/AF,
  11. Famiglietti JS, Rodell M (2013) Water in the balance. Science 340(6138):1300–1301. doi: 10.1126/science.1236460 CrossRefGoogle Scholar
  12. Feng W, Zhong M, Lemoine J-M, Biancale R, Hus H-T, Xia J (2013) Evaluation of groundwater depletion in North China using the gravity recovery and climate experiment (GRACE) data and ground-based measurements. Water Resour Res 49(4):2110–2118. doi: 10.1002/wrcr.20192 CrossRefGoogle Scholar
  13. Gardner A, Moholdt G, Cogley JG, Wouters B, Arendt AA, Wahr J, Berthier E, Hock R, Pfeffer WT, Kaser G, Ligtenberg SR, Bolch T, Sharp MJ, Hagen JO, van den Broeke MR, Paul F (2013) A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science 340(6134):852–857. doi: 10.1126/science.1234532 CrossRefGoogle Scholar
  14. Grippa M, Kergoat L, Frappart F, Araud Q, Boone A, De Rosnay P, Lemoine J-M, Gascoin S, Balsamo G, Ottlé C, Decharme B, Saux-Picart S, Ramillien G (2011) Land water storage variability over West Africa estimated by gravity recovery and climate experiment (GRACE) and land surface models. Water Resour Res 47(5):W05549. doi: 10.1029/2009WR008856 Google Scholar
  15. Groh A, Ewert H, Rosenau R, Fagiolini E, Gruber C, Floricioiu D, Abel Jaber W, Linow S, Flechtner F, Eineder M, Dierking W, Dietrich R (2014) Mass, volume and velocity of the Antarctic ice sheet: present-day changes and error effects. Surv Geophys 35(6):1481–1505. doi: 10.1007/s10712-014-9286-y CrossRefGoogle Scholar
  16. Gruber T, Murböck M, NGGM-D Team (2014) e2.motion - Earth System Mass Transport Mission (Square) - Concept for a Next Generation Gravity Field Mission. Final Report of Project “Satellite Gravimetry of the Next Generation (NGGM-D)”, Deutsche Geodätische Kommission der Bayerischen Akademie der Wissenschaften, Series B, vol. 2014, no. 318, C.H. Beck, ISBN (Print) 978-3-7696-8597-8,
  17. Güntner A (2008) Improvement of global hydrological models using GRACE data. Surv Geophys 29(4–5):375–397. doi: 10.1007/s10712-008-9038-y CrossRefGoogle Scholar
  18. Han SC, Riva R, Sauber J, Okal E (2013) Source parameter inversion for recent great earthquakes from a decade-long observation of global gravity fields. J Geophys Res 118(3):1240–1267. doi: 10.1002/jgrb.50116 CrossRefGoogle Scholar
  19. Hughes CW, Legrand P (2005) Future benefits of time-varying gravity missions to ocean circulation studies. Earth Moon Planets 94(1–2):73–81. doi: 10.1007/s11038-005-0452-6 Google Scholar
  20. Ivins ER, James TS, Wahr J, Schrama EJO, Landerer FW, Simon KM (2013) Antarctic contribution to sea level rise observed by GRACE with improved GIA correction. J Geophys Res Solid Earth 118(6):3126–3141. doi: 10.1002/jgrb.50208 CrossRefGoogle Scholar
  21. Joodaki G, Wahr J, Swenson S (2014) Estimating the human contribution to groundwater depletion in the Middle East, from GRACE data, land surface models, and well observations. Water Resour Res 50:2679–2692. doi: 10.1002/2013WR014633 CrossRefGoogle Scholar
  22. Kurtenbach E, Eicker A, Mayer-Gürr T, Holschneider M, Hayn M, Fuhrmann M, Kusche J (2012) Improved daily GRACE gravity field solutions using a Kalman smoother. J Geodyn 59:39–48. doi: 10.1016/j.jog.2012.02.006 CrossRefGoogle Scholar
  23. Lehner B, Grill G (2013) Global river hydrography and network routing: baseline data and new approaches to study the world’s large river systems. Hydrol Proc 27(15):2171–2186. doi: 10.1002/hyp.9740 CrossRefGoogle Scholar
  24. Lettenmaier DP, Famiglietti JS (2006) Hydrology: water from on high. Nature 444(7119):562–563. doi: 10.1038/444562a CrossRefGoogle Scholar
  25. Leuliette EW, Willis JK (2011) Balancing the sea level budget. Oceanography 24:122–129. doi: 10.5670/oceanog.2011.32 CrossRefGoogle Scholar
  26. Li B, Rodell M, Zaitchik BF, Reichle RH, Koster RD, van Dam TM (2012) Assimilation of GRACE terrestrial water storage into a land surface model: evaluation and potential value for drought monitoring in western and central Europe. J Hydrol 446–447:103–115. doi: 10.1016/j.jhydrol.2012.04.035 CrossRefGoogle Scholar
  27. Long D, Longuevergne L, Scanlon BR (2014) Uncertainty in evapotranspiration from land surface modeling, remote sensing, and GRACE satellites. Water Resour Res 50:1131–1151. doi: 10.1002/2013WR014581 CrossRefGoogle Scholar
  28. Longuevergne L, Scanlon BR, Wilson CW (2010) GRACE Hydrological estimates for small basins: evaluating processing approaches on the High Plains Aquifer, USA. Water Resour Res. doi: 10.1029/2009WR008564 Google Scholar
  29. Lorenz C, Kunstmann H, Devaraju B, Tourian M, Sneeuw N, Riegger J (2014) Large-scale runoff from landmasses: a global assessment of the closure of the hydrological and atmospheric water balances. J Hydrometeor. doi: 10.1175/JHM-D-13-0157.1 Google Scholar
  30. Luthcke SB, Sabaka TJ, Loomis BD, Arendt AA, McCarthy JJ, Camp J (2013) Antarctica, Greenland and Gulf of Alaska land-ice evolution from an iterated GRACE global mascon solution. J Glaciol 59(216):613–631. doi: 10.3189/2013JoG12J147 CrossRefGoogle Scholar
  31. Murböck M (2015) Virtual constellations of next generation gravity missions. Dissertation, TU MünchenGoogle Scholar
  32. Murböck M, Pail R, Daras I, Gruber T (2014) Optimal orbits for temporal gravity recovery regarding temporal aliasing. J Geod 88(2):113–126. doi: 10.1007/s00190-013-0671-y CrossRefGoogle Scholar
  33. Nicholls RJ, Cazenave A (2010) Sea-level rise and its impact on coastal zones. Science 18(328):1517–1520. doi: 10.1126/science.1185782 CrossRefGoogle Scholar
  34. Pail R, Bruinsma S, Migliaccio F, Förste C, Goiginger H, Schuh W-D, Höck E, Reguzzoni M, Brockmann JM, Abrikosov O, Veicherts M, Fecher T, Mayrhofer R, Krasbutter I, Sansó F, Tscherning CC (2011) First GOCE gravity field models derived by three different approaches. J Geodesy 85(11):819–843. doi: 10.1007/s00190-011-0467-x CrossRefGoogle Scholar
  35. Panet I, Flury J, Biancale R, Gruber T, Johannessen J, van den Broeke MR, van Dam T, Gegout P, Hughes C, Ramillien G, Sasgen I, Seoane L, Thomas M (2013) Earth system mass transport mission (e.motion): a concept for future earth gravity field measurements from space. Surv Geophys 34(2):141–163. doi: 10.1007/s10712-012-9209-8 CrossRefGoogle Scholar
  36. Reager JT, Thomas BF, Famiglietti JS (2014) River basin flood potential inferred using GRACE gravity observations at several months lead time. Nature Geosci 7(8):588–592. doi: 10.1038/ngeo2203 CrossRefGoogle Scholar
  37. Reigber C, Balmino G, Schwintzer P, Biancale R, Bode A, Lemoine J-M, Koenig R, Loyer S, Neumayer H, Marty JC, Barthelmes F, Perossanz F (2002) A high quality global gravity field model from CHAMP GPS tracking data and accelerometry (EIGEN-1S). Geophys Res Lett 29(14):37-1–37-4. doi: 10.1029/2002GL015064 CrossRefGoogle Scholar
  38. Rio M-H, Mulet S, Picot N (2014) Beyond GOCE for the ocean circulation estimate: synergetic use of altimetry, gravimetry, and in situ data provides new insight into geostrophic and Ekman currents. Geophys Res Lett 41(24):8918–8925. doi: 10.1002/2014GL061773 CrossRefGoogle Scholar
  39. Rummel R (2013) Height unification using GOCE. J Geod Sci 2012(2/4):355–362. doi: 10.2478/v10156-011-0047-2 Google Scholar
  40. Saunders P, Coward AC, de Cuevas BA (1999) Circulation of the Pacific Ocean seen in a global ocean model (OCCAM). J Geophys Res 104(C8):18281–18299. doi: 10.1029/1999JC900091 CrossRefGoogle Scholar
  41. Saynisch J, Bergmann-Wolf I, Thomas M (2015) Assimilation of GRACE-derived oceanic mass distributions with a global ocean circulation model. J Geodesy 89(2):121–139. doi: 10.1007/s00190-014-0766-0 CrossRefGoogle Scholar
  42. Sheffield J, Ferguson CR, Troy TJ, Wood EF, McCabe MF (2009) Closing the terrestrial water budget from satellite remote sensing. Geophys Res Lett 36:L07403. doi: 10.1029/2009GL037338 CrossRefGoogle Scholar
  43. Shepherd A, Ivins ER, Geruo A, Barletta VR, Bentley MJ, Bettadpur S, Briggs KH, Bromwich DH, Forsberg R, Galin N, Horwath M, Jacobs S, Joughin I, King MA, Lenaerts JTM, Li J, Ligtenberg SRM, Luckman A, Luthcke SB, McMillan M, Meister R, Milne G, Mouginot J, Muir A, Nicolas JP, Paden J, Payne AJ, Pritchard H, Rignot E, Rott H, Sandberg Sorensen L, Scambos TA, Scheuchl B, Schrama EJO, Smith B, Sundal AV, van Angelen JH, van de Berg WJ, van den Broeke MR, Vaughan DG, Velicogna I, Wahr J, Whitehouse PL, Wingham DJ, Yi D, Young D, Zwally HJ (2012) A reconciled estimate of ice-sheet mass balance. Science 338(6111):1183–1189. doi: 10.1126/science.1228102 CrossRefGoogle Scholar
  44. Tapley BD, Bettadpur S, Watkins M, Reigber C (2004) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31(9):L09607. doi: 10.1029/2004GL019920 CrossRefGoogle Scholar
  45. Tiwari VM, Wahr J, Swenson S (2009) Dwindling groundwater resources in northern India from satellite gravity observations. Geophys Res Lett 36(18):L18401. doi: 10.1029/2009GL039401 CrossRefGoogle Scholar
  46. Velicogna I, Sutterley TC, van den Broeke MR (2014) Regional acceleration in ice mass loss from Greenland and Antarctica using GRACE time-variable gravity data. Geophys Res Lett 41(22):8130–8137. doi: 10.1002/2014GL061052 CrossRefGoogle Scholar
  47. Visser PNAM, Sneeuw N, Reubelt T, Losch M, van Dam T (2010) Space-borne gravimetric satellite constellations and ocean tides: aliasing effects. Geophys J Int 181(2):789–805. doi: 10.1111/j.1365-246X.2010.04,557.x Google Scholar
  48. Volpi D, Doblas-Reyes FJ, García-Serrano J, Guemas V (2013) Dependence of the climate prediction skill on spatiotemporal scales: internal versus radiatively-forced contribution. Geophys Res Lett 40:3213–3219. doi: 10.1002/grl.50557 CrossRefGoogle Scholar
  49. Watkins M, Flechtner F, Morton P, Massmann F-H, Gaston R, Grunwaldt L (2015) Status of the GRACE follow-on mission. Geophys Res Abstr 17: EGU2015-6616, EGU General Assembly 2015Google Scholar
  50. Wiese DN, Visser PNAM, Nerem RS (2011) Estimating low resolution/high frequency gravity fields to reduce temporal aliasing errors. Adv Space Res 48(6):1094–1107. doi: 10.1016/j.asr.2011.05.027 CrossRefGoogle Scholar
  51. Willis JK, Chambers DP, Kuo CY, Shum CK (2010) Global sea level rise: recent progress and challenges for the decade to come. Oceanography 23:26–35. doi: 10.5670/oceanog.2010.03 CrossRefGoogle Scholar
  52. Wouters B, Bamber JL, van den Broeke MR, Lenaerts JTM, Sasgen I (2013) Limits in detecting acceleration of ice sheet mass loss due to climate variability. Nat Geosci 6(8):613–616. doi: 10.1038/ngeo1874 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Roland Pail
    • 1
  • Rory Bingham
    • 2
  • Carla Braitenberg
    • 3
  • Henryk Dobslaw
    • 4
  • Annette Eicker
    • 5
  • Andreas Güntner
    • 4
  • Martin Horwath
    • 6
  • Eric Ivins
    • 7
  • Laurent Longuevergne
    • 8
  • Isabelle Panet
    • 9
  • Bert Wouters
    • 2
    • 10
  • IUGG Expert Panel
  1. 1.Institute of Astronomical and Physical GeodesyTechnische Universität MünchenMunichGermany
  2. 2.Bristol Glaciology Centre, School of Geographical SciencesUniversity of BristolBristolUK
  3. 3.Dipartimento di Matematica e GeoscienzeUniversita’ degli Studi di TriesteTriesteItaly
  4. 4.Deutsches Geoforschungszentrum GFZPotsdamGermany
  5. 5.Institute of Geodesy and GeoinformationUniversity of BonnBonnGermany
  6. 6.Institut für Planetare GeodäsieTechnische Universität DresdenDresdenGermany
  7. 7.Jet Propulsion LaboratoryPasadenaUSA
  8. 8.Géosciences Rennes - UMR 6118Université Rennes 1Rennes CedexFrance
  9. 9.Laboratoire de Recherche en GéodésieInstitut Géographique NationalMarne la Vallée Cedex 2France
  10. 10.Department of PhysicsUniversity of Colorado at BoulderBoulderUSA

Personalised recommendations