Advertisement

Surveys in Geophysics

, Volume 37, Issue 2, pp 419–451 | Cite as

Modeling Groundwater Depletion at Regional and Global Scales: Present State and Future Prospects

  • Yoshihide Wada
Article

Abstract

Except for frozen water in ice and glaciers, groundwater is the world’s largest distributed store of freshwater and has strategic importance to global food and water security. In this paper, the most recent advances quantifying groundwater depletion (GWD) are comprehensively reviewed. This paper critically evaluates the recently advanced modeling approaches estimating GWD at regional and global scales, and the evidence of feedbacks to the Earth system including sea-level rise associated with GWD. Finally, critical challenges and opportunities in the use of groundwater are identified for the adaption to growing food demand and uncertain climate.

Keywords

Groundwater depletion (GWD) Climate variability Socioeconomic development Water scarcity Sustainability Projections 

Notes

Acknowledgments

The International Space Science Institute (ISSI) in Bern, Switzerland, and specifically Anny Cazenave and Nicolas Champollion, and acknowledged for hosting the ISSI Workshop on Remote Sensing and Water Resources. I wish to thank two anonymous reviewers for their constructive and thoughtful suggestions, which substantially helped to improve the quality of the manuscript. Y. Wada is supported by Japan Society for the Promotion of Science (JSPS) Overseas Research Fellowship (Grant No. JSPS-2014-878).

References

  1. Aeschbach-Hertig W, Gleeson T (2012) Regional strategies for the accelerating global problem of groundwater depletion. Nat Geosci 5:853–861. doi: 10.1038/ngeo1617 CrossRefGoogle Scholar
  2. Ahmad M-D, Bastiaanssen WGM, Feddes RA (2005) A new technique to estimate net groundwater use across large irrigated areas by combining remote sensing and water balance approaches, Rechna Doab, Pakistan. Hydrogeol J 13:653–664. doi: 10.1007/s10040-004-0394-5 CrossRefGoogle Scholar
  3. Alcamo J, Henrichs T (2002) Critical regions: a model-based estimation of world water resources sensitive to global changes. Aquat Sci 64:352–362. doi: 10.1007/PL00012591 CrossRefGoogle Scholar
  4. Alcamo J, Döll P, Henrichs T, Kaspar F, Lehner B, Rösch T, Siebert S (2003a) Development and testing of the WaterGAP 2 global model of water use and availability. Hydrol Sci J 48:317–337. doi: 10.1623/hysj.48.3.317.45290 CrossRefGoogle Scholar
  5. Alcamo J, Döll P, Henrichs T, Kaspar F, Lehner B, Rösch T, Siebert S (2003b) Global estimation of water withdrawals and availability under current and “business as usual” conditions. Hydrol Sci J 48:339–348. doi: 10.1623/hysj.48.3.339.45278 CrossRefGoogle Scholar
  6. Alcamo J, Flörke M, Märker M (2007) Future long-term changes in global water resources driven by socio-economic and climatic changes. Hydrol Sci J 52:247–275. doi: 10.1623/hysj.52.2.247 CrossRefGoogle Scholar
  7. Alley WM, Reilly TE, Franke OL (1999) Sustainability of ground-water resources, Circular 1186, Tech. Rep., Denver, CO, U.S. Geological Survey (USGS)Google Scholar
  8. Arnell NW (1999) Climate change and global water resources. Global Environ Chang 9:31–49. doi: 10.1016/S0959-3780(99)00017-5 CrossRefGoogle Scholar
  9. Arnell NW (2004) Climate change and global water resources: SRES emissions and socio-economic scenarios. Global Environ Chang 14:31–52. doi: 10.1016/j.gloenvcha.2003.10.006 CrossRefGoogle Scholar
  10. Biemans H, Haddeland I, Kabat P, Ludwig F, Hutjes RWA, Heinke J, von Bloh W, Gerten D (2011) Impact of reservoirs on river discharge and irrigation water supply during the 20th century. Water Resour Res 47:W03509. doi: 10.1029/2009WR008929 Google Scholar
  11. Bondeau A, Smith PC, Zaehle S, Schaphoff S, Lucht W, Cramer W, Gerten D, Reichstein M, Smith B (2007) Modelling the role of agriculture for the 20th century. Global Chang Biol 13:679–706. doi: 10.1111/j.1365-2486.2006.01305.x CrossRefGoogle Scholar
  12. Bredehoeft JD (2002) The water budget myth revisited: why hydrogeologists model? Ground Water 40:340–345. doi: 10.1111/j.1745-6584.2002.tb02511.x CrossRefGoogle Scholar
  13. Bruinsma J (2003) World agriculture: towards 2015/2030—an FAO perspective. Earthscan, London, p 444Google Scholar
  14. Cao G, Zheng C, Scanlon BR, Liu J, Li W (2013) Use of flow modeling to assess sustainability of groundwater resources in the North China Plain. Water Resour Res. doi: 10.1029/2012WR011899 Google Scholar
  15. Castle SL, Thomas BF, Reager JT, Rodell M, Swenson SC, Famiglietti JS (2014) Groundwater depletion during drought threatens future water security of the Colorado River Basin. Geophys Res Lett. doi: 10.1002/2014GL061055 Google Scholar
  16. CEDARE (2001) Regional strategy for the utilisation of the nubian sandstone aquifer system volume III: ground water model, Tech. Rep., Cent. for Environ. and Dev. for the Arab Reg. and Eur., Cairo, EgyptGoogle Scholar
  17. Chao BF, Wu YH, Li YS (2008) Impact of artificial reservoir water impoundment on global sea level. Science 320:212–214. doi: 10.1126/science.1154580 CrossRefGoogle Scholar
  18. Cheema MJ, Immerzeel WW, Bastiaanssen WG (2014) Spatial quantification of groundwater abstraction in the irrigated Indus basin. Ground Water 52:25–36. doi: 10.1111/gwat.12027 CrossRefGoogle Scholar
  19. Chen J, Famigliett JS, Scanlon BR, Rodell M (2015) Groundwater storage changes: present status from GRACE observations. Surv Geophys. doi: 10.1007/s10712-015-9332-4
  20. Crosbie RS, McCallum JL, Walker GR, Chiew FHS (2012) Episodic recharge and climate change in the Murray-Darling Basin, Australia. Hydrogeol J 20:245–261. doi: 10.1007/s10040-011-0804-4 CrossRefGoogle Scholar
  21. Dai A (2011) Drought under global warming: a review, WIREs Clim. Change 2:45–65. doi: 10.1002/wcc.81 Google Scholar
  22. Dai A (2013) Increasing drought under global warming: reconciling observed and model-simulated changes. Nat Clim Change 3:52–58. doi: 10.1038/nclimate1633 CrossRefGoogle Scholar
  23. Dankers R, Arnell NW, Clark DB, Falloon PD, Fekete BM, Gosling SN, Heinke J, Kim H, Masaki Y, Satoh Y, Stacke T, Wada Y, Wisser D (2014) First look at changes in flood hazard in the inter-sectoral impact model intercomparison project ensemble. Proc Natl Acad Sci USA 111(9):3257–3261. doi: 10.1073/pnas.1302078110 CrossRefGoogle Scholar
  24. Davie JCS, Falloon PD, Kahana R, Dankers R, Betts R, Portmann FT, Wisser D, Clark DB, Itoh A, Masaki Y, Nishina K, Fekete B, Tessler Z, Wada Y, Liu X, Tang Q, Hagemann S, Stacke T, Pavlick R, Schaphoff S, Gosling SN, Franssen W, Arnell N (2013) Comparing projections of future changes in runoff from hydrological and biome models in ISI-MIP. Earth Syst Dyn 4:359–374. doi: 10.5194/esd-4-359-2013 CrossRefGoogle Scholar
  25. De Graaf IEM, van Beek LPH, Wada Y, Bierkens MFP (2014a) Dynamic attribution of global water demand to surface water and groundwater resources: effects of abstractions and return flows on river discharges. Adv Water Resour 64:21–33. doi: 10.1016/j.advwatres.2013.12.002 CrossRefGoogle Scholar
  26. De Graaf IEM, Sutanudjaja EH, van Beek LPH, Bierkens MFP (2014b) A high resolution global scale groundwater model. Hydrol Earth Syst Sci Discuss 11:5217–5250. doi: 10.5194/hessd-11-5217-2014 CrossRefGoogle Scholar
  27. DeAngelis A, Dominguez F, Fan Y, Robock A, Kustu MD, Robinson D (2010) Evidence of enhanced precipitation due to irrigation over the Great Plains of the United States. J Geophys Res 115:D15115. doi: 10.1029/2010JD013892 CrossRefGoogle Scholar
  28. Dirmeyer PA, Gao X, Guo Z, Oki T, Hanasaki N (2006) GSWP-2: multimodel analysis and implications for our perception of the land surface. Bull Am Meteor Soc 87:1381–1397. doi: 10.1175/BAMS-87-10-1381 CrossRefGoogle Scholar
  29. Döll P (2002) Impact of climate change and variability on irrigation requirements: a global perspective. Clim Chang 54(3):269–293. doi: 10.1023/A:1016124032231 CrossRefGoogle Scholar
  30. Döll P (2009) Vulnerability to the impact of climate change on renewable groundwater resources: a global-scale assessment. Environ Res Lett 4:036006. doi: 10.1088/1748-9326/4/3/035006 CrossRefGoogle Scholar
  31. Döll P, Fiedler F (2008) Global-scale modeling of groundwater recharge. Hydrol Earth Syst Sci 12:863–885. doi: 10.5194/hess-12-863-2008 CrossRefGoogle Scholar
  32. Döll P, Siebert S (2002) Global modeling of irrigation water requirements. Water Resour Res. doi: 10.1029/2001WR000355 Google Scholar
  33. Döll P, Kaspar F, Lehner B (2003) A global hydrological model for deriving water availability indicators: model tuning and validation. J Hydrol 270:105–134. doi: 10.1016/S0022-1694(02)00283-4 CrossRefGoogle Scholar
  34. Döll P, Fiedler K, Zhang J (2009) Global-scale analysis of river flow alterations due to water withdrawals and reservoirs. Hydrol Earth Syst Sci 13:2413–2432. doi: 10.5194/hess-13-2413-2009 CrossRefGoogle Scholar
  35. Döll P, Hoffmann-Dobrev H, Portmann FT, Siebert S, Eicker A, Rodell M, Strassberg G (2012) Impact of water withdrawals from groundwater and surface water on continental water storage variations. J Geodyn 59–60:143–156. doi: 10.1016/j.jog.2011.05.001 CrossRefGoogle Scholar
  36. Döll P, Müller Schmied H, Schuh C, Portmann FT, Eicker A (2014) Global-scale assessment of groundwater depletion and related groundwater abstractions: combining hydrological modeling with information from well observations and GRACE satellites. Water Resour Res 50:5698–5720. doi: 10.1002/2014WR015595 CrossRefGoogle Scholar
  37. Döll P, Douville H, Güntner A, Müller Schmied H, Wada Y (2015) Modelling freshwater resources at the global scale: challenges and prospects. Surv Geophys. doi: 10.1007/s10712-015-9343-1
  38. Edmunds M (2003) Renewable and non-renewable groundwater in semi-arid and arid regions. In: Wood (ed) Water resources perspectives: evaluation, management and policy, developments in water science 50, Elsevier, Amsterdam, pp 265–280Google Scholar
  39. Elliott J, Deryng D, Müller C, Frieler K, Konzmann M, Gerten D, Glotter M, Flörke M, Wada Y, Eisner S, Folberth C, Foster I, Gosling SN, Haddeland I, Khabarov N, Ludwig F, Masaki Y, Olin S, Rosenzweig C, Ruane AC, Satoh Y, Schmid E, Stacke T, Tang Q, Wisser D (2014) Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proc Natl Acad Sci USA 111(9):3239–3244. doi: 10.1073/pnas.1222474110 CrossRefGoogle Scholar
  40. Fader M, Rost S, Müller C, Gerten D (2010) Virtual water content of temperate cereals and maize: present and potential future patterns. J Hydrol 384:218–231. doi: 10.1016/j.jhydrol.2009.12.011 CrossRefGoogle Scholar
  41. Fader M, Gerten D, Krause M, Lucht W, Cramer W (2013) Spatial decoupling of agricultural production and consumption: quantifying dependences of countries on food imports due to domestic land and water constraints. Environ Res Lett 8:014046. doi: 10.1088/1748-9326/8/1/014046 CrossRefGoogle Scholar
  42. Falkenmark M, Kijne JW, Taron B, Murdoch G, Sivakumar MVK, Craswell E (1997) Meeting water requirements of an expanding world population [and discussion]. Philos Trans R Soc Lond B 352:929–936. doi: 10.1098/rstb.1997.0072 CrossRefGoogle Scholar
  43. Falkenmark M, Rockström J, Karlberg L (2009) Present and future water requirements for feeding humanity. Food Sec 1:59–69. doi: 10.1007/s12571-008-0003-x CrossRefGoogle Scholar
  44. Famiglietti JS (2014) The global groundwater crisis. Nat Clim Chang 4:945–948. doi: 10.1038/nclimate2425 CrossRefGoogle Scholar
  45. Famiglietti JS, Lo M, Ho SL, Bethune J, Anderson KJ, Syed TH, Swenson SC, de Linage CR, Rodell M (2011) Satellites measure recent rates of groundwater depletion in California’s Central Valley. Geophys Res Lett 38:L03403. doi: 10.1029/2010GL046442 CrossRefGoogle Scholar
  46. Fan Y, Li H, Miguez-Macho G (2013) Global patterns of groundwater table depth. Science 339:940–943. doi: 10.1126/science.122988
  47. Feng W, Zhong M, Lemoine J-M, Biancale R, Hsu H-T, Xia J (2013) Evaluation of groundwater depletion in North China using the Gravity Recovery and Climate Experiment (GRACE) data and ground-based measurements. Water Resour Res 49:2110–2118. doi: 10.1002/wrcr.20192 CrossRefGoogle Scholar
  48. Feyen L, Dankers R (2009) Impact of global warming on streamflow drought in Europe. J Geophys Res 114:D17116. doi: 10.1029/2008JD011438 CrossRefGoogle Scholar
  49. Fischer G, Tubiello FN, van Velthuizen H, Wiberg DA (2007) Climate change impacts on irrigation water requirements: effects of mitigation, 1990–2080. Technol Forecast Soc Chang 74:1083–1107. doi: 10.1016/j.techfore.2006.05.021 CrossRefGoogle Scholar
  50. Fishman RM, Siegfried T, Raj P, Modi V, Lall U (2011) Over-extraction from shallow bedrock versus deep alluvial aquifers: reliability versus sustainability considerations for India’s groundwater irrigation. Water Resour Res 47: W00L05. doi: 10.1029/2011WR010617
  51. Flörke M, Kynast E, Bärlund I, Eisner S, Wimmer F, Alcamo J (2013) Domestic and industrial water uses of the past 60 years as a mirror of socio-economic development: a global simulation study. Global Environ Chang 23:144–156. doi: 10.1016/j.gloenvcha.2012.10.018 CrossRefGoogle Scholar
  52. Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, Mueller ND, O’Connell C, Ray DK, West PC, Balzer C, Bennett EM, Carpenter SR, Hill J, Monfreda C, Polasky S, Rockström J, Sheehan J, Siebert S, Tilman D, Zaks DPM (2011) Solutions for a cultivated planet. Nature 478:337–342. doi: 10.1038/nature10452 CrossRefGoogle Scholar
  53. Foster SSD, Chilton PJ (2003) Groundwater: the processes and global significance of aquifer degradation. Phil Trans Roy Soc Lond B Biol Sci 358:1957–1972. doi: 10.1098/rstb.2003.1380 CrossRefGoogle Scholar
  54. Foster S, Loucks DP (eds) (2006) Non-renewable groundwater resources: a guidebook on socially-sustainable management for water-policy makers, IHP-VI, series on Groundwater No. 10, UNESCO, Paris, FranceGoogle Scholar
  55. Foster S, Garduno H, Evans R, Olson D, Tian Y, Zhang W, Han Z (2004) Quaternary aquifer of the north china plain—assessing and achieving groundwater resource sustainability. Hydrogeol J 12:81–93. doi: 10.1007/s10040-003-0300-6 CrossRefGoogle Scholar
  56. Gain AK, Wada Y (2014) Assessment of future water scarcity at different spatial and temporal scales of the Brahmaputra River Basin. Water Resour Manage 28:999–1012. doi: 10.1007/s11269-014-0530-5 CrossRefGoogle Scholar
  57. Gerten D, Schaphoff S, Lucht W (2007) Potential future changes in water limitation of the terrestrial biosphere. Clim Chang 80:277–299. doi: 10.1007/s10584-006-9104-8 CrossRefGoogle Scholar
  58. Gerten D, Heinke J, Hoff H, Biemans H, Fader M, Waha K (2011) Global water availability and requirements for future food production. J Hydrometeorol 12:885–899. doi: 10.1175/2011JHM1328.1 CrossRefGoogle Scholar
  59. Gerten D, Hoff H, Rockström J, Jägermeyr J, Kummu M, Pastor AV (2013) Towards a revised planetary boundary for consumptive freshwater use: role of environmental flow requirements. Curr Opin Environ Sustain 5:551–558. doi: 10.1016/j.cosust.2013.11.001 CrossRefGoogle Scholar
  60. Gleeson T, Wada Y (2013) Assessing regional groundwater stress for nations using multiple data sources with the groundwater footprint. Environ Res Lett 8:044010. doi: 10.1088/1748-9326/8/4/044010 CrossRefGoogle Scholar
  61. Gleeson T, Alley WM, Allen DM, Sophocleous MA, Zhou Y, Taniguchi M, Van der Steen J (2012a) Towards sustainable groundwater use: setting long-term goals, backcasting, and managing adaptively. Groundwater 50:19–26. doi: 10.1111/j.1745-6584.2011.00825.x CrossRefGoogle Scholar
  62. Gleeson T, Wada Y, Bierkens MFP, van Beek LPH (2012b) Water balance of global aquifers revealed by groundwater footprint. Nature 488:197–200. doi: 10.1038/nature11295 CrossRefGoogle Scholar
  63. Gleick PH (2000) The changing water paradigm: a look at twenty-first century water resources development. Water Int 25:127–138. doi: 10.1080/02508060008686804 CrossRefGoogle Scholar
  64. Gleick PH (2003) Global freshwater resources: soft-path solutions for the 21st century. Science 302:1524–1528. doi: 10.1126/science.1089967 CrossRefGoogle Scholar
  65. Gleick PH (2010) Roadmap for sustainable water resources in southwestern North America. Proc Natl Acad Sci USA 107:21300–21305. doi: 10.1073/pnas.1005473107 CrossRefGoogle Scholar
  66. Gleick PH, Christian-Smith J, Cooley H (2010) Water-use efficiency and productivity: rethinking the basin approach. Water Int. 36:784–798. doi: 10.1080/02508060.2011.631873 CrossRefGoogle Scholar
  67. Gornitz V (1995) Sea-level rise: a review of recent past and near-future trends. Earth Surf Process Landforms 20:7–20. doi: 10.1002/esp.3290200103 CrossRefGoogle Scholar
  68. Gornitz V (2001) In: Douglas BC, Kearney MS, Leatherman SP (eds) Sea level rise: history and consequences. Academic Press, San Diego, pp 97–119Google Scholar
  69. Gosling SN, Bretherton D, Haines K, Arnell NW (2010) Global hydrology modelling and uncertainty: running multiple ensembles with a campus grid. Phil Trans R Soc A 368:4005–4021. doi: 10.1098/rsta.2010.0164 CrossRefGoogle Scholar
  70. Gosling SN, Taylor RG, Arnell NW, Todd MC (2011) A comparative analysis of projected impacts of climate change on river runoff from global and catchment-scale hydrological models. Hydrol Earth Syst Sci 15:279–294. doi: 10.5194/hess-15-279-2011 CrossRefGoogle Scholar
  71. Gregory JM, White NJ, Church JA, Bierkens MFP, Box JE, van den Broeke MR, Cogley JG, Fettweis X, Hanna E, Huybrechts P, Konikow LF, Leclercq PW, Marzeion B, Oerlemans J, Tamisiea ME, Wada Y, Wake LM, van de Wal RSW (2013) Twentieth-century global-mean sea level rise: is the whole greater than the sum of the parts? J Clim 26:4476–4499. doi: 10.1175/JCLI-D-12-00319.1 CrossRefGoogle Scholar
  72. Haddeland I, Skaugen T, Lettenmaier DP (2006) Anthropogenic impacts on continental surface water fluxes. Geophys Res Lett 33:L08406. doi: 10.1029/2006GL026047 CrossRefGoogle Scholar
  73. Haddeland I, Clark D, Franssen WHP, Ludwig F, Voss F, Arnell NW, Bertrand N, Best M, Folwell S, Gerten D, Gomes S, Gosling S, Hagemann S, Hanasaki N, Harding R, Heinke J, Kabat P, Koirala S, Oki T, Polcher J, Stacke T, Viterbo P, Weedon GP, Yeh P (2011) Multimodel estimate of the global terrestrial water balance: setup and first results. J Hydrometeor 12:869–884. doi: 10.1175/2011JHM1324.1 CrossRefGoogle Scholar
  74. Haddeland I, Heinke J, Biemans H, Eisner S, Flörke M, Hanasaki N, Konzmann M, Ludwig F, Masaki Y, Schewe J, Stacke T, Tessler Z, Wada Y, Wisser D (2014) Global water resources affected by human interventions and climate change. Proc Natl Acad Sci USA 111(9):3251–3256. doi: 10.1073/pnas.1302078110 CrossRefGoogle Scholar
  75. Hanasaki N, Kanae S, Oki T, Masuda K, Motoya K, Shirakawa N, Shen Y, Tanaka K (2008a) An integrated model for the assessment of global water resources—part 1: model description and input meteorological forcing. Hydrol Earth Syst Sci 12:1007–1025. doi: 10.5194/hess-12-1007-2008 CrossRefGoogle Scholar
  76. Hanasaki N, Kanae S, Oki T, Masuda K, Motoya K, Shirakawa N, Shen Y, Tanaka K (2008b) An integrated model for the assessment of global water resources—part 2: applications and assessments. Hydrol Earth Syst Sci 12:1027–1037. doi: 10.5194/hess-12-1027-2008 CrossRefGoogle Scholar
  77. Hanasaki N, Inuzuka T, Kanae S, Oki T (2010) An estimation of global virtual water flow and sources of water withdrawal for major crops and livestock products using a global hydrological model. J Hydrol 384:232–244. doi: 10.1016/j.jhydrol.2009.09.028 CrossRefGoogle Scholar
  78. Hanasaki N, Fujimori S, Yamamoto T, Yoshikawa S, Masaki Y, Hijioka Y, Kainuma M, Kanamori Y, Masui T, Takahashi K, Kanae S (2013a) A global water scarcity assessment under Shared Socio-economic pathways—part 1: water use. Hydrol Earth Syst Sci 17:2375–2391. doi: 10.5194/hess-17-2375-2013 CrossRefGoogle Scholar
  79. Hanasaki N, Fujimori S, Yamamoto T, Yoshikawa S, Masaki Y, Hijioka Y, Kainuma M, Kanamori Y, Masui T, Takahashi K, Kanae S (2013b) A global water scarcity assessment under shared socio-economic pathways—part 2: water availability and scarcity. Hydrol Earth Syst Sci 17:2393–2413. doi: 10.5194/hess-17-2393-2013 CrossRefGoogle Scholar
  80. Harbaugh AW, Banta ER, Hill MC, McDonald MG (2000) MODFLOW-2000, The U. S. Geological Survey modular ground-water model-user guide to modularization concepts and the ground-water flow process. Open-File Rep. 00-92, U.S. Geol. Survey (USGS), Reston, VAGoogle Scholar
  81. Hoekstra AY (2009) Human appropriation of natural capital: a comparison of ecological footprint and water footprint analysis. Ecol Econ 68:1963–1974. doi: 10.1016/j.ecolecon.2008.06.021 CrossRefGoogle Scholar
  82. Hoekstra AY, Mekonnen MM (2012) The water footprint of humanity. Proc Natl Acad Sci USA 109(9):3232–3237. doi: 10.1073/pnas.1109936109 CrossRefGoogle Scholar
  83. Hoff H, Falkenmark M, Gerten D, Gordon L, Karlberg L, Rockström J (2010) Greening the global water system. J Hydrol 384:177–186. doi: 10.1016/j.jhydrol.2009.06.026 CrossRefGoogle Scholar
  84. Hu Y, Moiwo JP, Yang Y, Han S, Yang Y (2010) Agricultural water-saving and sustainable groundwater management in Shijiazhuang Irrigation District, North China Plain. J Hydrol 393:219–232. doi: 10.1016/j.jhydrol.2010.08.017 CrossRefGoogle Scholar
  85. Huang Z, Pan Y, Gong H, Yeh PJ, Li X, Zhou D, Zhao W (2015) Subregional-scale groundwater depletion detected by GRACE for both shallow and deep aquifers in North China Plain. Geophys Res Lett 42:1791–1799. doi: 10.1002/2014GL062498 CrossRefGoogle Scholar
  86. Jacob T, Wahr J, Pfeffer WT, Swenson S (2012) Recent contributions of glaciers and ice caps to sea level rise. Nature 482:514–518. doi: 10.1038/nature10847 CrossRefGoogle Scholar
  87. Jasechko S, Sharp ZD, Gibson JJ, Birks SJ, Yi Y, Fawcett PJ (2013) Terrestrial water fluxes dominated by transpiration. Nature 496:347–350. doi: 10.1038/nature11983 CrossRefGoogle Scholar
  88. Jung M, Reichstein M, Ciais P, Seneviratne SI, Sheffield J, Goulden ML, Bonan G, Cescatti A, Chen JQ, de Jeu R, Dolman AJ, Eugster W, Gerten D, Gianelle D, Gobron N, Heinke J, Kimball J, Law BE, Montagnani L, Mu QZ, Mueller B, Oleson K, Papale D, Richardson AD, Roupsard O, Running S, Tomelleri E, Viovy N, Weber U, Williams C, Wood E, Zaehle S, Zhang K (2010) Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 467:951–954. doi: 10.1038/nature09396 CrossRefGoogle Scholar
  89. Karami E, Hayati D (2005) Rural poverty and sustainability: the case of groundwater depletion in Iran. Asian J Water Environ Pollut 2:51–61Google Scholar
  90. Koirala S, Yeh PJ-F, Hirabayashi Y, Kanae S, Oki T (2014) Global-scale land surface hydrologic modeling with the representation of water table dynamics. J Geophys Res Atmos 119:75–89. doi: 10.1002/2013JD020398 CrossRefGoogle Scholar
  91. Konikow LF (2011) Contribution of global groundwater depletion since 1900 to sea-level rise. Geophys Res Lett 38:L17401. doi: 10.1029/2011GL048604 CrossRefGoogle Scholar
  92. Konikow LF, Kendy E (2005) Groundwater depletion: a global problem. Hydrogeol J 13:317–320. doi: 10.1007/s10040-004-0411-8 CrossRefGoogle Scholar
  93. Konzmann M, Gerten D, Heinke J (2013) Climate impacts on global irrigation requirements under 19 GCMs, simulated with a vegetation and hydrology model. Hydrol Sci J 58:1–18. doi: 10.1080/02626667.2013.746495 CrossRefGoogle Scholar
  94. Kummu M, Ward PJ, de Moel H, Varis O (2010) Is physical water scarcity a new phenomenon? Global assessment of water shortage over the last two millennia. Environ Res Lett 5:034006. doi: 10.1088/1748-9326/5/3/034006 CrossRefGoogle Scholar
  95. Kummu M, de Moel H, Porkka M, Siebert S, Varis O, Ward PJ (2012) Lost food, wasted resources: global food supply chain losses and their impacts on freshwater, cropland, and fertiliser use. Sci Total Environ 438:477–489. doi: 10.1016/j.scitotenv.2012.08.092 CrossRefGoogle Scholar
  96. Kummu M, Gerten D, Heinke J, Konzmann M, Varis O (2014) Climate-driven interannual variability of water scarcity in food production: a global analysis. Hydrol Earth Syst Sci 18:447–461. doi: 10.5194/hess-18-447-2014 CrossRefGoogle Scholar
  97. Kustu M, Fan Y, Robock A (2010) Large-scale water cycle perturbation due to irrigation pumping in the US high plains: a synthesis of observed streamflow changes. J Hydrol 390:222–244. doi: 10.1016/j.jhydrol.2010.06.045 CrossRefGoogle Scholar
  98. Kustu MD, Fan Y, Rodell M (2011) Possible link between irrigation in the U.S. High Plains and increased summer stream flow in the Midwest. Water Resour Res 47:W03522. doi: 10.1029/2010WR010046 Google Scholar
  99. Lehner B, Döll P, Alcamo J, Henrichs T, Kaspar F (2006) Estimating the impact of global change on flood and drought risks in Europe: a continental integrated analysis. Clim Chang 75(273–299):2006. doi: 10.1007/s10584-006-6338-4 Google Scholar
  100. Lehner B, Reidy Liermann C, Revenga C, Vörösmarty C, Fekete B, Crouzet P, Döll P, Endejan M, Frenken K, Magome J, Nilsson C, Robertson JC, Rödel R, Sindorf N, Wisser D (2011) High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Fron Ecol Environ 9:494–502. doi: 10.1890/100125 CrossRefGoogle Scholar
  101. Lettenmaier DP, Milly PCD (2009) Land waters and sea level. Nat Geosci 2:452–454. doi: 10.1038/ngeo567 CrossRefGoogle Scholar
  102. Liu J, Yang H (2010) Spatially explicit assessment of global consumptive water uses in cropland: green and blue water. J Hydrol 384:187–297. doi: 10.1016/j.jhydrol.2009.11.024 CrossRefGoogle Scholar
  103. Llamas MR, Martínez-Santos P (2005) Intensive groundwater use: a silent revolution that cannot be ignored. Water Sci Technol 51:167–174Google Scholar
  104. Llamas R, Back W, Margat J (1992) Groundwater use: equilibrium between social benefits and potential environmental costs. Appl Hydrol 1:3–14. doi: 10.1007/PL00010965
  105. Lo MH, Yeh PJ-F, Famiglietti JS (2008) Using baseflow to constrain water table depth simulations in the NCAR Community Land Model (CLM). Adv Water Resour 31:1552–1564. doi: 10.1016/j.advwatres.2008.06.007 CrossRefGoogle Scholar
  106. Longuevergne L, Scanlon BR, Wilson CR (2010) GRACE Hydrological estimates for small basins: evaluating processing approaches on the High Plains Aquifer, USA. Water Resour Res 46:W11517. doi: 10.1029/2009WR008564 Google Scholar
  107. MacDonald GM (2010) Water, climate change, and sustainability in the southwest. Proc Natl Acad Sci USA 107:21256–21262. doi: 10.1073/pnas.0909651107 CrossRefGoogle Scholar
  108. Manga M (1999) On the timescales characterizing groundwater discharge at springs. J Hydrol 219:56–69CrossRefGoogle Scholar
  109. McGuire VL (2009) Water level changes in the High Plains Aquifer, predevelopment to 2007, 2005–06, and 2006–2007, U.S. Geol. Surv. Sci. Invest. Rep., 2009-5019, U.S. Geol. Surv., Reston, Virginia. http://pubs.usgs.gov/sir/2009/5019/
  110. Millennium Ecosystem Assessment (2005) Ecosystems and human well-being volume 2: scenarios. Island Press, Washington District of Columbia, p 515Google Scholar
  111. Nijssen B, Schnur R, Lettenmaier DP (2001a) Global retrospective estimation of soil moisture using the variable infiltration capacity land surface model, 1980–93. J Clim 14:1790–1808. doi: 10.1175/1520-0442(2001)014<1790:GREOSM>2.0.CO;2 CrossRefGoogle Scholar
  112. Nijssen B, O’Donnell GM, Lettenmaier DP, Lohmann D, Wood EF (2001b) Predicting the discharge of global rivers. J Clim 14:3307–3323. doi: 10.1175/1520-0442(2001)014<3307:PTDOGR>2.0.CO;2 CrossRefGoogle Scholar
  113. Oki T, Kanae S (2006) Global hydrological cycles and world water resources. Science 313:1068–1072. doi: 10.1126/science.1128845 CrossRefGoogle Scholar
  114. Oki T, Agata Y, Kanae S, Saruhashi T, Yang D, Musiake K (2001) Global assessment of current water resources using total runoff-integrating pathways. Hydrol Sci J 46:983–996. doi: 10.1080/02626660109492890 CrossRefGoogle Scholar
  115. Pala C (2006) Once a terminal case, the north aral sea shows new signs of life. Science 312:183. doi: 10.1126/science.312.5771.183 CrossRefGoogle Scholar
  116. Pala C (2011) In northern aral sea, rebound comes with a big catch. Science 334:303. doi: 10.1126/science.334.6054.303 CrossRefGoogle Scholar
  117. Pastor AV, Ludwig F, Biemans H, Hoff H, Kabat P (2013) Accounting for environmental flow requirements in global water assessments. Hydrol Earth Syst Sci Discuss 10:14987–15032. doi: 10.5194/hessd-10-14987-2013 CrossRefGoogle Scholar
  118. Pfister S, Bayer P, Koehler A, Hellweg S (2011a) Environmental impacts of water use in global crop production: hotspots and trade-offs with land use. Environ Sci Technol 45:5761–5768. doi: 10.1021/es1041755 CrossRefGoogle Scholar
  119. Pfister S, Bayer P, Koehler A, Hellweg S (2011b) Projected water consumption in future global agriculture: scenarios and related impacts. Sci Total Environ 409:4206–4216. doi: 10.1016/j.scitotenv.2011.07.019 CrossRefGoogle Scholar
  120. Pokhrel Y, Hanasaki N, Koirala S, Cho J, Yeh PJ-F, Kim H, Kanae S, Oki T (2012a) Incorporating anthropogenic water regulation modules into a land surface model. J Hydrometeorol 13:255–269. doi: 10.1175/JHM-D-11-013.1 CrossRefGoogle Scholar
  121. Pokhrel YN, Hanasaki N, Yeh PJ-F, Yamada T, Kanae S, Oki T (2012b) Model estimates of sea level change due to anthropogenic impacts on terrestrial water storage. Nat Geosci 5:389–392. doi: 10.1038/ngeo1476 CrossRefGoogle Scholar
  122. Pokhrel YN, Fan Y, Miguez-Macho G, Yeh PJ-F, Han S-C (2013) The role of groundwater in the Amazon water cycle: 3. Influence on terrestrial water storage computations and comparison with GRACE. J Geophys Res Atmos 118:3233–3244. doi: 10.1002/jgrd.50335 CrossRefGoogle Scholar
  123. Pokhrel YN, Koirala S, Yeh PJ-F, Hanasaki N, Longuevergne L, Kanae S, Oki T (2015) Incorporation of groundwater pumping in a global land surface model with the representation of human impacts. Water Resour Res 51:78–96. doi: 10.1002/2014WR015602 CrossRefGoogle Scholar
  124. Portmann FT, Döll P, Eisner S, Flörke M (2013) Impact of climate change on renewable groundwater resources: assessing the benefits of avoided greenhouse gas emissions using selected CMIP5 climate projections. Environ Res Lett 8:024023. doi: 10.1088/1748-9326/8/2/024023 CrossRefGoogle Scholar
  125. Postel SL (1999) Pillar of sand: can the irrigation miracle last? W.W. Norton, New YorkGoogle Scholar
  126. Postel SL, Daily GC, Ehrlich PR (1996) Human appropriation of renewable fresh water. Science 271:785–788. doi: 10.1126/science.271.5250.785 CrossRefGoogle Scholar
  127. Prudhomme C, Giuntoli I, Robinson EL, Clark DB, Arnell NW, Dankers R, Fekete B, Franssen W, Gerten D, Gosling SN, Hagemann S, Hannah DM, Kim H, Masaki Y, Satoh Y, Stacke T, Wada Y, Wisser D (2014) Drought in the 21st century: a multi-model ensemble experiment to assess global change, quantify uncertainty and identify ‘hotspots’, change. Proc Natl Acad Sci USA 111(9):3262–3267. doi: 10.1073/pnas.1222473110 CrossRefGoogle Scholar
  128. Ramankutty N, Foley JA (1998) Characterizing patterns of global land use: an analysis of global croplands data. Global Biogeochem Cycl 12(4):667–685. doi: 10.1029/98GB02512 CrossRefGoogle Scholar
  129. Ramankutty N, Evan AT, Monfreda C, Foley JA (2008) Farming the planet. Part 1: the geographic distribution of global agricultural lands in the year 2000. Global Biogeochem Cycles 22:GB1003 doi: 10.1029/2007GB002952
  130. Reilly TE, Dennehy KF, Alley WM, Cunningham WL (2008) Ground-water availability in the United States, U.S. Geol. Surv. Circ., p. 70. http://pubs.usgs.gov/circ/1323/
  131. Richey AS, Thomas BF, Lo M-H, Reager JT, Famiglietti JS, Voss K, Swenson S, Rodell M (2015) Quantifying renewable groundwater stress with GRACE. Water Resour Res 51:5217–5238. doi: 10.1002/2015WR017349 CrossRefGoogle Scholar
  132. Rockström J, Falkenmark M, Karlberg L, Hoff H, Rost S, Gerten D (2009) Future water availability for global food production: the potential of green water for increasing resilience to global change. Water Resour Res 45:W00A12. doi: 10.1029/2007WR006767
  133. Rodell M, Velicogna I, Famiglietti JS (2009) Satellite-based estimates of groundwater depletion in India. Nature 460:999–1002. doi: 10.1038/nature08238 CrossRefGoogle Scholar
  134. Rost S, Gerten D, Bondeau A, Luncht W, Rohwer J, Schaphoff S (2008) Agricultural green and blue water consumption and its influence on the global water system. Water Resour Res 44:W09405. doi: 10.1029/2007WR006331 Google Scholar
  135. Sahagian DL, Schwartz FW, Jacobs DK (1994) Direct anthropogenic contributions to sea level rise in the twentieth century. Nature 367:54–57. doi: 10.1038/367054a0 CrossRefGoogle Scholar
  136. Scanlon BR, Healy RW, Cook PG (2002) Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeol J 10:18–39. doi: 10.1007/s10040-001-0176-2 CrossRefGoogle Scholar
  137. Scanlon BR, Reedy RC, Stonestrom DA, Prudic DE, Dennehy KF (2005) Impact of land use and land cover change on groundwater recharge and quality in the southwestern US. Glob Chang Biol 11:1577–1593. doi: 10.1111/j.1365-2486.2005.01026.x CrossRefGoogle Scholar
  138. Scanlon BR, Keese KE, Flint AL, Flint LE, Gaye CB, Edmunds WM, Simmers I (2006) Global synthesis of groundwater recharge in semiarid and arid regions. Hydrol Process 20:3335–3370. doi: 10.1002/hyp.6335 CrossRefGoogle Scholar
  139. Scanlon BR, Jolly I, Sophocleous M, Zhang L (2007) Global impacts of conversions from natural to agricultural ecosystems on water resources: quantity versus quality. Water Resour Res 43:W03437. doi: 10.1029/2006WR005486 Google Scholar
  140. Scanlon BR, Reedy RC, Gates JB (2010) Effects of irrigated agroecosystems: 1. Quantity of soil water and groundwater in the southern High Plains, Texas. Water Resour Res 46:W09537. doi: 10.1029/2009WR008427 Google Scholar
  141. Scanlon BR, Faunt CC, Longuevergne L, Reedy RC, Alley WM, McGuire VL, McMahon PB (2012a) Groundwater depletion and sustainability of irrigation in the U.S. High Plains and Central Valley. Proc Natl Acad Sci USA 109:9320–9325. doi: 10.1073/pnas.1200311109 CrossRefGoogle Scholar
  142. Scanlon BR, Longuevergne L, Long D (2012b) Ground referencing GRACE satellite estimates of groundwater storage changes in the California Central Valley, USA. Water Resour Res 48:W04520. doi: 10.1029/2011WR011312 Google Scholar
  143. Schewe J, Heinke J, Gerten D, Haddeland I, Arnell NW, Clark DB, Dankers R, Eisner S, Fekete B, Colón-González FJ, Gosling SN, Kim H, Liu X, Masaki Y, Portmann FT, Satoh Y, Stacke T, Tang Q, Wada Y, Wisser D, Albrecht T, Frieler K, Piontek F, Warszawski L, Kabat P (2014) Multi-model assessment of water scarcity under climate change. Proc Natl Acad Sci USA 111(9):3245–3250. doi: 10.1073/pnas.1222460110 CrossRefGoogle Scholar
  144. Seager R (2007) The turn of the century North American drought: global context, dynamics, and past analogs. J Clim 20:5527–5552. doi: 10.1175/2007JCLI1529.1 CrossRefGoogle Scholar
  145. Shah T (2005) Groundwater and human development: challenges and opportunities in livelihoods and environment. Water Sci Technol 51:27–37Google Scholar
  146. Shamsudduha M, Taylor RG, Longuevergne L (2012) Monitoring groundwater storage changes in the highly seasonal humid tropics: validation of GRACE measurements in the Bengal Basin. Water Resour Res 48:W02508. doi: 10.1029/2011WR010993 Google Scholar
  147. Sheffield J, Wood EF (2007) Characteristics of global and regional drought, 1950–2000: analysis of soil moisture data from off-line simulation of the terrestrial hydrologic cycle. J Geophys Res 112:D17115. doi: 10.1029/2006JD008288 CrossRefGoogle Scholar
  148. Sheffield J, Wood EF, Roderick ML (2012) Little change in global drought over the past 60 years. Nature 491:435–438. doi: 10.1038/nature11575 CrossRefGoogle Scholar
  149. Shiklomanov IA (2000a) World water scenarios analyses, chap. World water resources and water use: present assessment and outlook for 2025, Earthscan, LondonGoogle Scholar
  150. Shiklomanov IA (2000b) Appraisal and assessment of world water resources. Water Int. 25:11–32. doi: 10.1080/02508060008686794 CrossRefGoogle Scholar
  151. Siebert S, Döll P (2010) Quantifying blue and green virtual water contents in global crop production as well as potential production losses without irrigation. J Hydrol 384:198–217. doi: 10.1016/j.jhydrol.2009.07.031 CrossRefGoogle Scholar
  152. Siebert S, Burke J, Faures JM, Frenken K, Hoogeveen J, Döll P, Portmann FT (2010) Groundwater use for irrigation—a global inventory. Hydrol Earth Syst Sci 14:1863–1880. doi: 10.5194/hess-14-1863-2010 CrossRefGoogle Scholar
  153. Smakhtin VU (2001) Low flow hydrology: a review. J Hydrol 240:147–186. doi: 10.1016/S0022-1694(00)00340-1 CrossRefGoogle Scholar
  154. Smakhtin VU, Revenga C, Döll P (2004) A pilot global assessment of environmental water requirements and scarcity. Wat. Int. 29:307–317. doi: 10.1080/02508060408691785 CrossRefGoogle Scholar
  155. Solomon S, et al (eds) (2007) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  156. Strassberg G, Scanlon BR, Rodell M (2007) Comparison of seasonal terrestrial water storage variations from GRACE with groundwater-level measurements from the High Plains Aquifer (USA). Geophys Res Lett 34:L14402. doi: 10.1029/2007GL030139 CrossRefGoogle Scholar
  157. Sturchio NC et al (2004) One million year old groundwater in the Sahara revealed by krypton-81 and chlorine-36. Geophys Res Lett 31:L05503. doi: 10.1029/2003GL019234 CrossRefGoogle Scholar
  158. Tague C, Grant G, Farrell M, Choate J, Jefferson A (2008) Deep groundwater mediates streamflow response to climate warming in the Oregon Cascades. Clim Change 86:189–210. doi: 10.1007/s10584-007-9294-8 CrossRefGoogle Scholar
  159. Tallaksen LM, van Lanen HAJ (2004) Hydrological drought. Processes and estimation for streamflow and groundwater, developments in water science, 48. Elsevier, Amsterdam, p 581Google Scholar
  160. Tang Q, Lettenmaier DP (2012) 21st century runoff sensitivities of major global river basins. Geophys Res Lett 39:L06403. doi: 10.1029/2011GL050834
  161. Tapley BD, Bettadpur S, Ries JC, Thompson PF, Watkins MM (2004) GRACE measurements of mass variability in the Earth system. Science 305:503–505. doi: 10.1126/science.1099192 CrossRefGoogle Scholar
  162. Taylor RG, Scanlon B, Döll P, Rodell M, van Beek R, Wada Y, Longuevergne L, LeBlanc M, Famiglietti JS, Edmunds M, Konikow L, Green TR, Chen J, Taniguchi M, Bierkens MFP, MacDonald A, Fan Y, Maxwell RM, Yechieli Y, Gurdak JJ, Allen DM, Shamsudduha M, Hiscock K, Yeh PJ-F, Holman I, Treidel H (2013) Groundwater and climate change. Nat Clim Chang 3:322–329. doi: 10.1038/nclimate1744 CrossRefGoogle Scholar
  163. Tiwari VM, Wahr J, Swenson S (2009) Dwindling groundwater resources in northern India, from satellite gravity observations. Geophys Res Lett 36:L18401. doi: 10.1029/2009GL039401 CrossRefGoogle Scholar
  164. Trenberth KE, Branstator GW, Arkin PA (1988) Origins of the 1988 North American Drought. Science 242:1640–1645. doi: 10.1126/science.242.4886.1640 CrossRefGoogle Scholar
  165. Trenberth KE, Dai A, van der Schrier G, Jones PD, Barichivich J, Briffa KR, Sheffield J (2014) Global warming and changes in drought, Nature Clim. Change 4:17–22. doi: 10.1038/nclimate2067 Google Scholar
  166. Turral H, Burke J, Faurès J-M (2011) Climate change, water and food security, Water Rep., 36, Food and Agric. Organ. of United Nations (FAO), Rome, Italy, p 200Google Scholar
  167. U.S. Geological Survey (USGS) (1999) Ground water (general interest publication), Tech. Rep., Reston, VA. USA. http://capp.water.usgs.gov/GIP/gw_gip/
  168. U.S. Geological Survey (USGS) (2000) Ground water resources for the future: land subsidence in the United States, USGS Fact Sheet-165-00, Tech. Rep., Reston, VA. USA. http://water.usgs.gov/ogw/pubs/fs00165/
  169. Van Beek LPH, Wada Y, Bierkens MFP (2011) Global monthly water stress: 1. Water balance and water availability. Water Resour Res 47:W07517. doi: 10.1029/2010WR009791 Google Scholar
  170. Van Dijk AIJM, Renzullo LJ, Wada Y, Tregoning P (2014) A global water cycle reanalysis (2003–2012) merging satellite gravimetry and altimetry observations with a hydrological multi-model ensemble. Hydrol Earth Syst Sci 18:2955–2973. doi: 10.5194/hess-18-2955-2014 CrossRefGoogle Scholar
  171. Van Vuuren D, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt G, Kram T, Krey V, Lamarque J-F, Masui T, Meinshausen M, Nakicenovic N, Smith S, Rose S (2011) The representative concentration pathways: an overview. Clim Chang 109:5–31. doi: 10.1007/s10584-011-0148-z CrossRefGoogle Scholar
  172. Vörösmarty CJ, Green P, Salisbury J, Lammers RB (2000) Global water resources: vulnerability from climate change and population growth. Science 289:284–288. doi: 10.1126/science.289.5477.284 CrossRefGoogle Scholar
  173. Vörösmarty CJ, Leveque C, Revenga C (2005) Millennium ecosystem assessment volume 1: conditions and trends, chap 7: Freshwater ecosystems. Island Press, Washington, pp 165–207Google Scholar
  174. Vörösmarty CJ, McIntyre P, Gessner MO, Dudgeon D, Prusevich A, Green P, Glidden S, Bunn SE, Sullivan CA, Liermann CR (2010) Global threats to human water security and river biodiversity. Nature 467:555–561. doi: 10.1038/nature09440 CrossRefGoogle Scholar
  175. Voss KA, Famiglietti JS, Lo M, de Linage C, Rodell M, Swenson SC (2013) Groundwater depletion in the Middle East from GRACE with implications for transboundary water management in the Tigris-Euphrates-Western Iran region. Water Resour Res. doi: 10.1002/wrcr.20078 Google Scholar
  176. Wada Y, Bierkens MFP (2014) Sustainability of global water use: past reconstruction and future projections. Environ Res Lett 9:104003. doi: 10.1088/1748-9326/9/10/104003 CrossRefGoogle Scholar
  177. Wada Y, Heinrich L (2013) Assessment of transboundary aquifers of the world—vulnerability arising from human water use. Environ Res Lett 8:024003. doi: 10.1088/1748-9326/8/2/024003 CrossRefGoogle Scholar
  178. Wada Y, van Beek LPH, van Kempen CM, Reckman JWTM, Vasak S, Bierkens MFP (2010) Global depletion of groundwater resources. Geophys Res Lett 37:L20402. doi: 10.1029/2010GL044571 CrossRefGoogle Scholar
  179. Wada Y, van Beek LPH, Bierkens MFP (2011a) Modelling global water stress of the recent past: on the relative importance of trends in water demand and climate variability. Hydrol Earth Syst Sci 15:3785–3808. doi: 10.5194/hess-15-3785-2011 CrossRefGoogle Scholar
  180. Wada Y, van Beek LPH, Viviroli D, Dürr HH, Weingartner R, Bierkens MFP (2011b) Global monthly water stress: 2. Water demand and severity of water stress. Water Resour Res 47:W07518. doi: 10.1029/2010WR009792 Google Scholar
  181. Wada Y, van Beek LPH, Bierkens MFP (2012a) Nonsustainable groundwater sustaining irrigation: a global assessment. Water Resour Res 48:W00L06. doi: 10.1029/2011WR010562. Special Issue: Toward Sustainable Groundwater in Agriculture
  182. Wada Y, van Beek LPH, Sperna Weiland FC, Chao BF, Wu Y-H, Bierkens MFP (2012b) Past and future contribution of global groundwater depletion to sea-level rise. Geophys Res Lett 39:L09402. doi: 10.1029/2012GL051230 CrossRefGoogle Scholar
  183. Wada Y, van Beek LPH, Wanders N, Bierkens MFP (2013a) Human water consumption intensifies hydrological drought worldwide. Environ Res Lett 8:034036. doi: 10.1088/1748-9326/8/3/034036 CrossRefGoogle Scholar
  184. Wada Y, Wisser D, Eisner S, Flörke M, Gerten D, Haddeland I, Hanasaki N, Masaki Y, Portmann FT, Stacke T, Tessler Z, Schewe J (2013b) Multimodel projections and uncertainties of irrigation water demand under climate change. Geophys Res Lett 40:4626–4632. doi: 10.1002/grl.50686 CrossRefGoogle Scholar
  185. Wada Y, Wisser D, Bierkens MFP (2014a) Global modeling of withdrawal, allocation and consumptive use of surface water and groundwater resources. Earth Syst Dyn 5:15–40. doi: 10.5194/esd-5-15-2014 CrossRefGoogle Scholar
  186. Wada Y, Gleeson T, Esnault L (2014b) Wedge approach to water stress. Nat Geosci 7:615–617. doi: 10.1038/ngeo2241 CrossRefGoogle Scholar
  187. Widén-Nilsson E, Halldin S, Xu C-Y (2007) Global water-balance modelling with WASMOD-M: parameter estimation and regionalization. J Hydrol 340:105–118. doi: 10.1016/j.jhydrol.2007.04.002 CrossRefGoogle Scholar
  188. Wilhite DA (ed) (2000) Drought: a global assessment. Routledge, LondonGoogle Scholar
  189. Wisser D, Fekete BM, Vörösmarty CJ, Schumann AH (2010) Reconstructing 20th century global hydrography: a contribution to the Global Terrestrial Network-Hydrology (GTN-H). Hydrol Earth Syst Sci 14:1–24. doi: 10.5194/hess-14-1-2010 CrossRefGoogle Scholar
  190. Wisser D, Frolking S, Hagen S, Bierkens MFP (2013) Beyond peak reservoir storage? A global estimate of declining water storage capacity in large reservoirs. Water Resour Res 49:5732–5739. doi: 10.1002/wrcr.20452 CrossRefGoogle Scholar
  191. World Water Assessment Programme (WWAP) (2003) Water for people: Water for life, The United Nations World Water Development Report, United Nations Educational, Scientific and Cultural Organization (UNESCO), Paris, FranceGoogle Scholar
  192. World Water Assessment Programme (WWAP) (2009) Water in a changing world, The United Nations World Water Development Report 3, United Nations Educational, Scientific and Cultural Organization (UNESCO), Paris, FranceGoogle Scholar
  193. Yates DN (1997) Approaches to continental scale runoff for integrated assessment models. J Hydrol 201:289–310. doi: 10.1016/S0022-1694(97)00044-9 CrossRefGoogle Scholar
  194. Yoshikawa S, Cho J, Yamada HG, Hanasaki N, Khajuria A, Kanae S (2014) An assessment of global net irrigation water requirements from various water supply sources to sustain irrigation: rivers and reservoirs (1960–2000 and 2050). Hydrol Earth Syst Sci 18:4289–4310. doi: 10.5194/hess-18-4289-2014 CrossRefGoogle Scholar
  195. Zektser IS, Everett LG (eds) (2004) Groundwater resources of the world and their use, IHP-VI series on groundwater No. 6, United Nations Educational, Scientific and Cultural Organization (UNESCO), Paris, FranceGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.NASA Goddard Institute for Space StudiesNew YorkUSA
  2. 2.Center for Climate Systems ResearchColumbia UniversityNew YorkUSA
  3. 3.Department of Physical Geography, Faculty of GeosciencesUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations