Advertisement

Surveys in Geophysics

, Volume 36, Issue 5, pp 693–716 | Cite as

3D Attenuation Tomography of the Volcanic Island of Tenerife (Canary Islands)

  • J. Prudencio
  • J. M. Ibáñez
  • E. Del Pezzo
  • J. Martí
  • A. García-Yeguas
  • L. De Siena
Article

Abstract

This paper shows a new multidisciplinary interpretation approach to the internal structure of Tenerife Island. The central core of this work is the determination of the three-dimensional attenuation structure of the region using P-waves and the coda normalization method. This study has been performed using 45,303 seismograms recorded at 85 seismic stations from an active experiment (air gun shots) conducted in January 2007. The interpretation of these new results is done combining the new images with previous studies performed in the area such as seismic velocity tomography, magnetic structure, magnetotelluric surveys or gravimetric models. Our new 3D images indicate the presence of seismic attenuation contrasts, with areas of high and low seismic attenuation patterns. High seismic attenuation zones are observed both in shallow and in deeper areas. The shallowest area of Las Cañadas caldera complex (1–3 km thick) is dominated by high attenuation behavior, and it is interpreted as the combined effect of sedimentary and volcanoclastic deposits, multifracture systems and the presence of shallow aquifers. At the same time, the deeper analyzed area, more than 8 km below sea level, is dominated by a high attenuation pattern, and it is interpreted as the consequence of the effect of high-temperature rocks in the crustal–mantle boundary. This interpretation is compatible and confirmed by previous models that indicate the presence of underplating magma in this region. On the contrary, some low attenuation bodies and structures have been identified at different depths. A deep low attenuation central body is interpreted as the original central structure associated with the early stage of Tenerife Island. At shallower depths, some low attenuation bodies are compatible with old intermediate magmatic chambers postulated by petrological studies. Finally, in the north of the island (La Orotava valley) we can interpret the low attenuation structure as the headwall of this valley, supporting the idea that Las Cañadas caldera and this valley resulted from two different destructive processes.

Keywords

Attenuation Scattering Tomography Tenerife  Canary Islands 

Notes

Acknowledgments

This work was funded by several projects as Grupo de Investigación en Geofísica y Sismología from the Andalusian Regional Program, APASVO (TEC2012-31551) Spanish project and by the EU project MED-SUV (EC-FP7 MEDiterranean SUpersite Volcanoes). MED-SUV has received funding from the European Union’s Seventh Program for research, technological development and demonstration under grant agreement No 308665. We also want to acknowledge the very useful contribution of the Editor-in-Chief and an anonymous reviewer that helped us to improve the present paper. The first author is funded by the International Research Promotion Office from ERI (University of Tokyo), and Edoardo Del Pezzo was partially funded by the V2-Precursori project from DPC-INGV.

References

  1. Abdel-Monen A, Watkins ND, Gast P (1972) Potassium-argon ages, volcanic stratigraphy and geomagnetic polarity history of the Canary Islands: Tenerife, La Palma and El Hierro. Am J Sci 272:805–825CrossRefGoogle Scholar
  2. Ablay G (1997) Evolution of the Teide-Pico Viejo complex and magma system, Tenerife, Canary Islands. Ph.D. thesis, University of BristolGoogle Scholar
  3. Ablay G, Kearey P (2000) Gravity constraints on the structure and volcanic evolution of Tenerife, Canary Islands. J Geophys Res 105:5783–5796CrossRefGoogle Scholar
  4. Aki K (1980) Attenuation of shear-waves in the lithosphere for frequencies from 0.05 to 25 hz. Phys Earth Planet Inter 21:50–60CrossRefGoogle Scholar
  5. Akinci A, Del Pezzo E, Ibáñez J (1995a) Separation of scattering and intrinsic attenuation in southern Spain and western Anatolia (Turkey). Geophys J Int 121:337–353CrossRefGoogle Scholar
  6. Akinci A, Ibáñez J, Del Pezzo E, Morales J (1995b) Geometrical spreading and attenuation of Lg waves: a comparison between western Anatolia (Turkey) and southern Spain. Tectonophysics 250:47–50CrossRefGoogle Scholar
  7. Almendros J, Ibáñez J, Alguacil G, Morales J, Del Pezzo E, La Rocca M, Ortiz R, Araña V, Blanco MJ (2000) A double seismic antenna experiment at Teide volcano: existence of local seismicity and lack of evidences of volcanic tremor. J Volcanol Geotherm Res 103:439–462CrossRefGoogle Scholar
  8. Almendros J, Ibáñez J, Carmona E, Zandomeneghi D (2007) Array analyses of volcanic earthquake and tremor recorded at Las Cañadas caldera (Tenerife Island, Spain) during the 2004 seismic activation of Teide volcano. J Volcanol Geotherm Res 160:285–299CrossRefGoogle Scholar
  9. Alparone S, Barberi G, Cocina O, Giampiccolo E, Musumeci C, Patané D (2012) Intrusive mechanism of the 2008–2009 Mt. Etna eruption: constraints by tomographic images and stress tensor analysis. J Volcanol Geotherm Res 229–230:50–63CrossRefGoogle Scholar
  10. Ancochea E, Fúster JM, Ibarrola E, Cendrero A, Coello J, Hernan F, Cantagrel J, Jamond C (1990) Volcanic evolution of the Island of Tenerife (Canary Islands) in the light of new K-Ar data. J Volcanol Geotherm Res 44:231–249CrossRefGoogle Scholar
  11. Andújar J, Costa F, Martí J (2010) Magma storage conditions of the last eruption of Teide volcano (Canary Islands, Spain). Bull Volcanol 72(4):381–395CrossRefGoogle Scholar
  12. Araña V (1971) Litología y estructura del edificio Cañadas, Tenerife (Islas Canarias). Estudios Geológicos 27:95–137Google Scholar
  13. Blanco-Montenegro I, Nicolosi I, Pignatelli A, García A, Chiappini M (2011) New evidence about the structure and growth of ocean Island volcanoes from aeromagnetic data: the case of Tenerife, Canary Islands. J Geophys Res 116:1–17. doi: 10.1029/2010JB007646
  14. Block LV (1991) Joint hypocenter-velocity inversion of local earthquakes arrival time data in two geothermal regions. Ph.D. dissertation, MIT, CambrigeGoogle Scholar
  15. Bosshard E, MacFarlane DJ (1970) Crustal structure of the western Canary Island from seismic refraction and gravity data. J Geophys Res 75(26):4901–4918CrossRefGoogle Scholar
  16. Carracedo JC, Rodríguez-Bardiola E, Guillou H, Paterne M, Scaillet S, Pérez-Torrado FJ, Paris R, Fra-Paleo U, Hansen A (2007) Eruptive and structural history of Teide volcano and rift zone of Tenerife, Canary Islands. Geol Soc Am Bull 119:1027–1051CrossRefGoogle Scholar
  17. Coppo N, Schnegg PA, Heise W, Falco P, Costa R (2008) Multiple caldera collapses inferred from the shallow electrical resistivity signature of the Las Cañadas caldera, Tenerife, Canary Islands. J Volcanol Geotherm Res 170:153–166CrossRefGoogle Scholar
  18. Coppo N, Schnegg PA, Falco P, Costa R (2010) Conductive structures around Las Cañadas caldera, Tenerife (Canary Islands, Spain): a structural control. Geol Acta 8:67–82Google Scholar
  19. Dañobeitia JJ, Canales JP (2000) Magmatic underplating in the Canary Archipelago. J Volcanol Geotherm Res 103(1):27–41CrossRefGoogle Scholar
  20. Dash BP, Bosshard E (1969) Seismic and gravity investigations around the western Canary Islands. Earth Planet Sci Lett 7(2):169–177CrossRefGoogle Scholar
  21. De Barros L, Martini F, Bean CJ, García-Yeguas A, Ibáñez J (2012) Imaging magma storage below Teide volcano (Tenerife) using scattered seismic wavefields. Geophys J Int 191:695–706CrossRefGoogle Scholar
  22. De Gori P, Chiarabba C, Patané D (2005) Qp structure of Mount Etna: constraints for the physics of the plumbing system. J Geophys Res 110:1–16. doi: 10.1029/2003JB002875
  23. De Lorenzo S, Gasparini P, Mongelli F, Zollo A (2001) Thermal state of the Campi Flegrei caldera inferred from seismic attenuation tomography. J Geodyn 32:467–486CrossRefGoogle Scholar
  24. De Siena L, Del Pezzo E, Bianco F, Tramelli A (2009) Multiple resolution seismic attenuation imaging at Mt. Vesuvius. Phys Earth Planet Inter 173:17–32CrossRefGoogle Scholar
  25. De Siena L, Del Pezzo E, Bianco F (2010) Seismic attenuation imaging of Campi Flegrei: evidence of gas reservoirs, hydrothermal basins and feeding systems. J Geophys Res 115:2156–2174. doi: 10.1029/2009JB006938
  26. De Siena L, Waite G, Moran S, Thomas C (2013) Joint scattering and attenuation imaging of Mount Saint Helens reveals the melt paths feeding an erupting volcano. Submitted to Nature GeosciencesGoogle Scholar
  27. De Siena L, Thomas C, Aster R (2014) Multi-scale reasonable attenuation tomography analysis (MuRAT): an imaging algorithm designed for volcanic regions. J Volcanol Geotherm Res 277:22–35CrossRefGoogle Scholar
  28. Del Pezzo E (2008) Seismic wave scattering in volcanoes. Adv Geophys 50:353–371CrossRefGoogle Scholar
  29. Del Pezzo E, La Rocca M, Ibáñez J (1997) Observations of high-frequency scattered waves using dense array at Teide volcano. Bull Seismol Soc Am 87:1637–1647Google Scholar
  30. Del Pezzo E, Bianco F, De Siena L, Zollo A (2006) Small scale shallow attenuation structure at Mt. Vesuvius. Phys Earth Planet Inter 157:257–268CrossRefGoogle Scholar
  31. Domínguez Cerdeña I, Del Fresno C, Rivera L (2011) New insight on the increasing seismicity during Tenerife’s 2004 volcanic reactivation. J Volcanol Geotherm Res 206:15–29CrossRefGoogle Scholar
  32. Eberhart-Phillips D, Reyners M, Chadwick M, Chiu JM (2005) Crustal heterogeneity and subduction processes: 3-d vp, vp/vs and q in the southern North Island, New Zealand. Geophys J Int 162:270–288CrossRefGoogle Scholar
  33. Fullea J, Camacho AG, Negredo AM, Fernndez J (2015) The Canary Islands hot spot: new insights from 3D coupled geophysical-petrological modelling of the lithosphere and uppermost mantle. Earth Planet Sci Lett 409:71–88. doi: 10.1016/j.epsl.2014.10.038 CrossRefGoogle Scholar
  34. Fúster JM, Araña V, Brandle JL, Navarro JM, Alonso V, Aparicio A(1968) Geología y volcanología de las Islas Canarias: Tenerife. Instituto Mallada, CSIC, p 218Google Scholar
  35. García O, Guzmán S, Martí J (2014) Stratigraphic correlation of Holocene phonolitic explosive episodes of the Teide–Pico Viejo volcanic complex, Tenerife. J Geol Soc 171:375–387CrossRefGoogle Scholar
  36. García-Yeguas A, Koulakov I, Ibáñez J, Rietbrock A (2012) High resolution P wave velocity structure beneath Tenerife Island (Canary Islands, Spain). Geophys J Int 117. doi: 10.1029/2011JB008,970
  37. Geyer A, Martí J (2010) The distribution of basaltic volcanism on Tenerife, Canary Islands: implications on the origin and dynamics of the rift systems. Tectonophysics 483(3):310–326CrossRefGoogle Scholar
  38. Gottsmann J, Camacho AG, Martí J, Wooler L, Fernández J, García A, Rymer H (2008) Shallow structure beneath the central volcanic complex of Tenerife from new gravity data: implications for its evolution and recent reactivation. Phys Earth Planet Inter 168:212–230CrossRefGoogle Scholar
  39. Gudmundsson O, Finlayson DM, Itikarai I, Nishimura Y, Johnson W (2004) Seismic attenuation at Rabaul volcano, Papua new Guinea. J Volcanol Geotherm Res 130:77–92CrossRefGoogle Scholar
  40. Hansen S, Thurber CH, Mandernach M, Haslinger F, Doran C (2004) Seismic velocity and attenuation structure of the east rift zone and south flank of Kilauea Volcano. Hawaii Bull Seismol Soc Am 94:1430–1440CrossRefGoogle Scholar
  41. Ibáñez J, Del Pezzo E, Alguacil G, De Miguel F, Morales J, De Martino S, Sabbarese C, Posadas AM (1993) Geometrical spreading function for short-period s and coda waves recorded in southern Spain. Phys Earth Planet Inter 80:25–36CrossRefGoogle Scholar
  42. Ibáñez J, Rietbrock A, García-Yeguas A (2008) Imaging an active volcano edifice at Tenerife Island, Spain. EOS Trans Am Geophys Un 89:289–300CrossRefGoogle Scholar
  43. Iribarren I (2014) Modelos geológicos en 3D de la isla de Tenerife. Ph.D. thesis, University of Barcelona, p 234 (in Spanish)Google Scholar
  44. Koulakov I (2009) Code ATOM-3D for 3D tomographic inversion based on active refraction seismic dataGoogle Scholar
  45. La Rocca M, Del Pezzo E, Simini M, Scarpa R, De Luca G (2001) Array analysis of seismogram from explosive sources: evidences for surface waves scattered at the main topographical features. Bull Seismol Soc Am 91:219–231CrossRefGoogle Scholar
  46. Lodge A, Nippress S, Rietbrock A, García-Yeguas A, Ibáñez J (2012) Evidence for magmatic underplating and partial melt beneath the Canary Islands derived using teleseismic receiver functions. Phys Earth Planet Inter 212–213:44–54CrossRefGoogle Scholar
  47. Mantovani E, Viti M, Babbucci D, Albarello D (2007) Nubia-Eurasia kinematics: an alternative interpretation from Mediterranean and North Atlantic evidence. Ann Geophys 50(3):341–366Google Scholar
  48. Martí J, Gudmundsson A (2000) The Las Cañadas caldera (Tenerife, Canary Islands): an overlapping collapse caldera generated by magma-chamber migration. J Volcanol Geotherm Res 103:161–173CrossRefGoogle Scholar
  49. Martí J, Mitjavila J, Araña V (1994) Stratigraphy, structure and geochronology of the Las Canadas caldera (Tenerife, Canary Islands). Geol Mag 131:715–727CrossRefGoogle Scholar
  50. Martí J, Ablay G, Bryan S (1996) Comment on “The Canary Islands: an example of structural control on the growth of large oceanic-island volcanoes” by J. C. Carracedo. J Volcanol Geotherm Res 72(1):143–149CrossRefGoogle Scholar
  51. Martí J, Hurlimann M, Ablay G, Gudmundsson A (1997) Vertical and lateral collapses on Tenerife (Canary Islands) and other volcanic ocean Islands. Geology 25:879–882CrossRefGoogle Scholar
  52. Martí J, Geyer A, Andujar J, Teixó F, Costa F (2008) Assessing the potential for future explosive activity from Teide-Pico Viejo stratovolcanoes (Tenerife, Canary Islands). J Volcanol Geotherm Res 178:529–542CrossRefGoogle Scholar
  53. Martí J, Sobradelo R, Felpeto A, García O (2012) Eruptive scenarios of phonolitic volcanism at Teide–Pico Viejo volcanic complex (Tenerife, Canary Islands). Bull Volcanol 74:767–782CrossRefGoogle Scholar
  54. Martínez-Arevalo C, Patané D, Rietbrock A, Ibáñez J (2005) The intrusive process leading to the Mt. Etna 2001 flank eruption: constraints from 3D attenuation tomography. Geophys ResLett 32:L21,309Google Scholar
  55. Mezcua J, Buforn E, Udías A, Rueda J (1992) Seismotectonics of the Canary Islands. Tectonophysics 208:447–452CrossRefGoogle Scholar
  56. Morozov IB (2011) Mechanisms of geometrical seismic attenuation. Ann Geophys 54(3):235–248. doi: 10.4401/ag-4780 Google Scholar
  57. Neumann ER, Wulff-Pedersen E, Simonsen S, Pearson NJ, O’Reilly SY, Martí J, Mitjavila J (1999) Evidence for fractional crystallization of periodically refilled magma chambers in Tenerife, Canary Islands. J Petrol 40:1089–1123CrossRefGoogle Scholar
  58. Nolet G (2008) A breviary of seismic tomography. Imaging the interior of the earth and sun. Cambridge University Press, p 360, ISBN 978-0-521-88244-6Google Scholar
  59. Ohlendorf SJ, Thurber C, Pesicek JD, Prejean SG (2014) Seismicity and seismic structure at Okmok Volcano, Alaska. J Volcanol Geotherm Res 278:103–119CrossRefGoogle Scholar
  60. Piña-Varas P, Ledo J, Queralt P, Marcuello A, Bellmunt F, Hidalgo R, Messeiller M (2014) 3-D magnetotelluric exploration of Tenerife geothermal system (Canary Islands, Spain). Surv Geophys 35:1045:1064CrossRefGoogle Scholar
  61. Pittari A, Cas RAF, Wolff JA, Nichols HJ, Larson PB, Martí J (2008) The use of lithic clast distributions in pyroclastic deposits to understand pre-and syn-caldera collapse processes: a case study of the Abrigo Ignimbrite, Tenerife, Canary Islands. Dev Volcanol 10:97–142CrossRefGoogle Scholar
  62. Pous J, Schnegg PA, Muoz G, Martí J, Soriano C (2002) Magnetotelluric study of the Las Cañadas caldera (Tenerife, Canary Islands): structural and hydrogeological implications. Earth Planet Sci Lett 204:249–263CrossRefGoogle Scholar
  63. Prudencio J, Del Pezzo E, García-Yeguas A, Ibáñez J (2013a) Spatial distribution of intrinsic and scattering seismic attenuation in active volcanic Islands, I: model and the case of Tenerife Island. Geophys J Int 195(3):1942–1956. doi: 10.1093/gji/ggt361 CrossRefGoogle Scholar
  64. Prudencio J, Ibáñez J, García-Yeguas A, Del Pezzo E (2013b) Spatial distribution of intrinsic and scattering seismic attenuation in active volcanic Islands, II: deception Island images. Geophys J Int 195(3):1957–1969. doi: 10.1093/gji/ggt360 CrossRefGoogle Scholar
  65. Prudencio J, De Siena L, Ibáñez J, Del Pezzo E, García-Yeguas A, Díaz-Moreno A (2015) The 3D attenuation structure of Deception Island Antarctica. Surv Geophys 36(3):371–390. doi: 10.1007/s10712-015-9322-6 CrossRefGoogle Scholar
  66. Roest WR, Dañobeitia JJ, Verhoef J, Collette BJ (1992) Magnetic anomalies in the Canary Basin and the Mesozoic evolution of the central North Atlantic. Mar Geophys Res 14:1–24CrossRefGoogle Scholar
  67. Romero-Ruiz C (1991) Las manifestaciones volcánicas históricasdel archipiélago canario. Consejería Territorial GobiernoAutónomo de Canarias, Santa Cruz de Tenerife, España, p 1463Google Scholar
  68. Sato H, Fehler M, Maeda T (2012) Seismic wave propagation and scattering in heterogeneous earth, 2nd edn. Springer, Berlin, HeidelbergCrossRefGoogle Scholar
  69. Schurr B, Asch G, Rietbrock A, Trumbull R, Haberland CH (2003) Complex patterns of fluid and melt transport in the central Andean subduction zone revealed by attenuation tomography. Earth Planet Sci Lett 215:105–119CrossRefGoogle Scholar
  70. Soler-Javaloyes V, Carracedo JC (2013) Geophysical investigations of the Teide volcanic complex. Springer, Berlin, HeidelbergCrossRefGoogle Scholar
  71. Thrilwall M, Singer BS, Marriner GF (2000) 39Ar/40Ar ages and geochemistry of the shield stage of Tenerife, Canary Islands, Spain. J Volcanol Geotherm Res 103:247–297CrossRefGoogle Scholar
  72. Tramelli A, Del Pezzo E, Fehler M (2009) 3D scattering image of Mt. Vesuvius. Bull Seismol Soc Am 99:1962–1972CrossRefGoogle Scholar
  73. Um J, Thurber C (1987) A fast algorithm for two-point seismic ray tracing. Bull Seismol Soc Am 77:972–986Google Scholar
  74. Vanorio T, Virieux J, Capuano P, Russo G (2005) Three-dimensional tomography from P wave and S wave microearthquake travel times and rock physics characterization of the Campi Flegrei Caldera. J Geophys Res 110(B03201). doi: 10.129/2004JB003,102
  75. Verhoef J, Collette BJ, Dañobeitia JJ, Roeser HA, Roest WR (1991) Magnetic anomalies off West-Africa (20–38 N). Marin Geophys Res 13(2):81–103Google Scholar
  76. Villasante-Marcos V, Finizola A, Abella R, Barde-Cabusson S, Blanco MJ, Brenes B, Cabrera V, Casas B, De Agustín P, Di Gangi F, Domínguez I, García O, Gomis A, Guzmán J, Iribarren I, Levieux G, López C, Luengo-Oroz N, Martín I, Moreno M, Meletlidis S, Morin J, Moure D, Pereda J, Ricci T, Romero E, Schutze C, Suski-Ricci B, Torres P, Trigo P (2014) Hydrothermal system of central Tenerife volcanic complex, Canary Islands (Spain), inferred from self-potential measurements. J Volcanol Geotherm Res 272:59–77CrossRefGoogle Scholar
  77. Watts AB, Pierce C, Collier J, Dalwood R, Canales JP, Hens-Tock TJ (1997) A seismic study of lithosphere flexure in the vicinity of Tenerife, Canary Islands. Earth Planet Sci Lett 146:431–447CrossRefGoogle Scholar
  78. Yoshimoto K, Sato H, Ohtake M (1993) Frequency-dependent attenuation of P and S waves in Kanto area, Japan, based on the coda-normalization method. Geophys J Int 114:165–174CrossRefGoogle Scholar
  79. Zandomeneghi D, Barclay A, Almendros J, Ibáñez J, Wilcock WSD (2009) Crustal structure of Deception Island volcano from P-wave seismic tomography: tectonic and volcanic implications. J Geophys Res 114:1–16. doi: 10.1029/2008JB006119

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Earthquake Research InstituteUniversity of TokyoBunkyo-kuJapan
  2. 2.Instituto Andaluz de GeofísicaUniversity of GranadaGranadaSpain
  3. 3.Dept. Fisica Teórica y del CosmosUniversity of GranadaGranadaSpain
  4. 4.Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Catania -Osservatorio EtneoCataniaItaly
  5. 5.Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Napoli -Osservatorio VesuvianoNaplesItaly
  6. 6.Instituto de Ciencias de la Tierra Jaume AlmeraCSICBarcelonaSpain
  7. 7.Dept. Física AplicadaUniversity of CádizCádizSpain
  8. 8.INVOLCAN, Antiguo Hotel TaoroPuerto de la CruzSpain
  9. 9.School of Geosciences, Geology and Petroleum Geology, Meston Building, King’s CollegeUniversity of AberdeenAberdeeenScotland

Personalised recommendations