Skip to main content
Log in

Can GPS-Derived Surface Loading Bridge a GRACE Mission Gap?

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

We investigated two ‘gap-filler’ methods based on GPS-derived low-degree surface loading variations (GPS-I and GPS-C) and a more simple method (REF-S) which extends a seasonal harmonic variation into the expected Gravity Recovery and Climate Experiment (GRACE) mission gap. We simulated two mission gaps in a reference solution (REF), which is derived from a joint inversion of GRACE (RL05) data, GPS-derived surface loading and simulated ocean bottom pressure. The GPS-I and GPS-C methods both have a new type of constraint applied to mitigate the lack of GPS station network coverage over the ocean. To obtain the GPS-C solution, the GPS-I method is adjusted such that it fits the reference solution better in a 1.5 year overlapping period outside of the gap. As can be expected, the GPS-I and GPS-C solutions contain larger errors compared to the reference solution, which is heavily constrained by GRACE. Within the simulated gaps, the GPS-C solution generally fits the reference solution better compared to the GPS-I method, both in terms of spherical harmonic loading coefficients and in terms of selected basin-averaged hydrological mass variations. Depending on the basin, the RMS-error of the water storage variations (scaled for leakage effects) ranges between 1.6 cm (Yukon) and 15.3 cm (Orinoco). In terms of noise level, the seasonal gap-filler method (REF-S) even outperforms the GPS-I and GPS-C methods, which are still affected by spatial aliasing problems. However, it must be noted that the REF-S method cannot be used beyond the study of simple harmonic seasonal variations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Baur O, Kuhn M, Featherstone W (2009) GRACE-derived ice-mass variations over Greenland by accounting for leakage effects. J Geophys Res 114(B6)

  • Blewitt G (2003) Self-consistency in reference frames, geocenter definition, and surface loading of the solid earth. J Geophys Res 108(B2):2103

    Article  Google Scholar 

  • Blewitt G, Clarke P (2003) Inversion of earth’s changing shape to weigh sea level in static equilibrium with surface mass redistribution. J Geophys Res 108:2311. doi:10.1029/2002JB002290

    Google Scholar 

  • Blewitt G, Lavallée D, Clarke P, Nurutdinov K (2001) A new global mode of earth deformation: seasonal cycle detected. Science 294(5550):2342–2345. doi:10.1126/science.1065328

    Article  Google Scholar 

  • Chambers DP, Schröter J (2011) Measuring ocean mass variability from satellite gravimetry. J Geodyn 52(5):333–343

    Article  Google Scholar 

  • Collilieux X, van Dam T, Ray J, Coulot D, Métivier L, Altamimi Z (2011) Strategies to mitigate aliasing of loading signals while estimating GPS frame parameters. J Geod 86:1–14

    Google Scholar 

  • Dahle C, Flechtner F, Gruber C, König D, König R, Michalak G, Neumayer K (2013) GFZ GRACE level-2 processing standards document for level-2 product release 0005. Scientific Technical Report STR12/02, Data Revised Edition (January 2013)

  • Dahlen FA (1976) The passive influence of the oceans upon the rotation of the earth. Geophys J R Astron Soc 46(2):363–406

    Article  Google Scholar 

  • Desai SD (2002) Observing the pole tide with satellite altimetry. J Geophys Res 107(C11):3186. doi:10.1029/2001JC001224

    Article  Google Scholar 

  • Döll P, Kaspar F, Lehner B (2003) A global hydrological model for deriving water availability indicators: model tuning and validation. J Hydrol 270(1–2):105–134

    Article  Google Scholar 

  • Dziewonski A (1981) Preliminary reference earth model. Phys Earth Planet Inter 25(4):297. doi:10.1016/0031-9201(81)90046-7

    Article  Google Scholar 

  • Eicker A, Schumacher M, Kusche J, Döll P, Müller-Schmied H (2014) Calibration/data assimilation approach for integrating GRACE data into the WaterGAP global hydrology model (WGHM) using an ensemble Kalman filter. Surv Geophys (this issue)

  • Fenoglio-Marc L, Rietbroek R, Grayek S, Becker M, Kusche J, Stanev E (2012) Water mass variation in the mediterranean and black sea. J Geodyn 59-60(0):168–182. doi:10.1016/j.jog.2012.04.001, Mass Transport and Mass Distribution in the System Earth

    Article  Google Scholar 

  • Flechtner F, Morton P, Watkins M, Webb F (2013) Status of the GRACE follow-on mission. In: Proceedings of the IAG symposia, gravity, geoid and height systems (GGHS2012), Venice, Italy (accepted)

  • Fritsche M, Dietrich R, Knöfel C, Rülke A, Vey S, Rothacher M, Steigenberger P (2005) Impact of higher-order ionospheric terms on GPS estimates. Geophys Res Lett 32(23):L23,311

    Article  Google Scholar 

  • Jekeli C (1981) Alternative methods to smooth the Earth’s gravity field. The Ohio State University, Columbus, OH

    Google Scholar 

  • Koch KR, Kusche J (2002) Regularization of geopotential determination from satellite data by variance components. J Geod 76(5):259–268

    Article  Google Scholar 

  • Köhl A, Siegismund F, Stammer D (2012) Impact of assimilating bottom pressure anomalies from GRACE on ocean circulation estimates. J Geophys Res 117(C4)

  • Kusche J (2003) A monte-carlo technique for weight estimation in satellite geodesy. J Geod 76(11):641–652

    Article  Google Scholar 

  • Kusche J, Schrama EJO (2005) Surface mass redistribution inversion from global GPS deformation and Gravity Recovery and Climate Experiment (GRACE) gravity data. J Geophys Res 110(B9):9409. doi:10.1029/2004JB003556

    Article  Google Scholar 

  • Pilinski E, Nerem R (2011) Experiments with EOF-based gravity field reconstructions using SLR and GRACE data. In: AGU fall meeting abstracts, vol 1, p 884

  • Rietbroek R, Brunnabend SE, Dahle C, Kusche J, Flechtner F, Schröter J, Timmermann R (2009) Changes in total ocean mass derived from GRACE, GPS, and ocean modeling with weekly resolution. J Geophys Res 114:C11004. doi:10.1029/2009JC005449

    Article  Google Scholar 

  • Rietbroek R, Brunnabend SE, Kusche J, Schröter J (2012) Resolving sea level contributions by identifying fingerprints in time-variable gravity and altimetry. J Geodyn 59:72–81. doi:10.1016/j.jog.2011.06.007

    Article  Google Scholar 

  • Rietbroek R, Fritsche M, Brunnabend SE, Daras I, Kusche J, Schröter J, Flechtner F, Dietrich R (2012) Global surface mass from a new combination of GRACE, modelled obp and reprocessed GPS data. J Geodyn 59–60(0):64–71. doi:10.1016/j.jog.2011.02.003

    Google Scholar 

  • Rignot E, Velicogna I, Van den Broeke M, Monaghan A, Lenaerts J (2011) Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys Res Lett 38(5)

  • Schmidt R, Flechtner F, Meyer U, Neumayer KH, Dahle C, König R, Kusche J (2008) Hydrological signals observed by the GRACE satellites. Surv Geophys 29(4–5):319. doi:10.1007/s10712-008-9033-3

    Article  Google Scholar 

  • Sheard B, Heinzel G, Danzmann K, Shaddock D, Klipstein W, Folkner W (2012) Intersatellite laser ranging instrument for the GRACE follow-on mission. J Geod 86(12):1083–1095

    Article  Google Scholar 

  • Simons FJ, Dahlen FA, Wieczorek MA (2006) Spatiospectral concentration on a sphere. SIAM Rev 48(3):504–536. doi:10.1137/S0036144504445765

    Article  Google Scholar 

  • Steigenberger P, Rothacher M, Dietrich R, Fritsche M, Rülke A, Vey S (2006) Reprocessing of a global GPS network. J Geophys Res 111(B5):B05402

    Google Scholar 

  • Tapley BD, Bettadpur S, Ries JC, Thompson PF, Watkins MM (2004) GRACE measurements of mass variability in the earth system. Science 305:503–506. doi:10.1126/science.1099192

    Article  Google Scholar 

  • Timmermann R, Danilov S, Schröter J, Böning C, Sidorenko D, Rollenhagen K (2009) Ocean circulation and sea ice distribution in a finite element global sea ice–ocean model. Ocean Model 27(3-4):114–129. doi:10.1016/j.ocemod.2008.10.009

    Article  Google Scholar 

  • Velicogna I, Wahr J (2006) Acceleration of Greenland ice mass loss in spring 2004. Nature 443(7109):329–331. doi:10.1038/nature05168

    Article  Google Scholar 

  • Wahr J, Molenaar M, Bryan F (1998) Time variability of the earth’s gravity field: hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res 103:30205–30230. doi:10.1029/98JB02844

    Article  Google Scholar 

  • Wang X, Gerlach C, Rummel R (2012) Time-variable gravity field from satellite constellations using the energy integral. Geophys J Int 190(3):1507–1525

    Article  Google Scholar 

  • Woodward R (1888) On the form and position of mean sea level. Geol Surv Bull 48:87–170

    Google Scholar 

  • Wu X, Heflin MB, Ivins ER, Fukumori I (2006) Seasonal and interannual global surface mass variations from multisatellite geodetic data. J Geophys Res 111(B10):9401. doi:10.1029/2005JB004100

    Article  Google Scholar 

  • Wu X, Heflin MB, Schotman H, Vermeersen BLA, Dong D, Gross RS, Ivins ER, Moore AW, Owen SE (2010) Simultaneous estimation of global present-day water transport and glacial isostatic adjustment. Nat Geosci 3(9):642. doi:10.1038/ngeo938

    Article  Google Scholar 

  • Wu X, Ray J, van Dam T (2012) Geocenter motion and its geodetic and geophysical implications. J Geodyn 58:44–61

    Article  Google Scholar 

  • Zaitchik BF, Rodell M, Reichle RH (2008) Assimilation of GRACE terrestrial water storage data into a land surface model: results for the Mississippi River basin. J Hydrometeorol 9(3):535–548

    Article  Google Scholar 

Download references

Acknowledgements

Financial support of this study has been provided by the German Research Foundation, under Grants KU1207/6-3, DI473/41-3, FL592/1-3, SCHR779/4-3, in the framework of the special priority program: SPP1257 ‘mass transport and mass distribution in the system Earth.’ We would like to thank the German Space Operations Center (GSOC) of the German Aerospace Center (DLR) for providing continuously and nearly 100 % of the raw telemetry data of the twin GRACE satellites. The helpful suggestions of Xiaoping Wu and an anonymous reviewer were highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roelof Rietbroek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rietbroek, R., Fritsche, M., Dahle, C. et al. Can GPS-Derived Surface Loading Bridge a GRACE Mission Gap?. Surv Geophys 35, 1267–1283 (2014). https://doi.org/10.1007/s10712-013-9276-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-013-9276-5

Keywords

Navigation