Surveys in Geophysics

, Volume 34, Issue 6, pp 797–830 | Cite as

Toward Better Understanding of Sprite Streamers: Initiation, Morphology, and Polarity Asymmetry



This paper presents a literature survey on the recent developments related to modeling studies of transient luminous events termed sprites and sprite halos that are produced at mesospheric and lower ionospheric altitudes in the Earth’s atmosphere by lightning. The primary emphasis is placed on publications that appeared in the refereed literature starting from year 2010 and up to the present date. The survey focuses on the interpretation of morphological features observed in sprites. We introduce parameters typically used for quantitative description of electron avalanches and discuss the importance of space charge effects on different spatial scales, including sprite halos (exhibiting 10s of km transverse extents) and sprite streamers (requiring submeter resolution for accurate description). A special emphasis is placed on the interpretation of initiation and development of sprite streamers captured in high-speed video observations and a critical review of the most recent modeling efforts related to these observations. We also discuss fundamental reasons for polarity asymmetry in existing sprite observations indicating that vast majority of sprites with well-developed streamer structure are produced by positive cloud-to-ground lightning discharges.


Atmospheric electricity Lightning Sprites Sprite halos Sprite streamers 



This research was supported by the United States National Science Foundation under AGS-0734083 Grant to Penn State University. S. Celestin’s research is supported by the French Space Agency (CNES).


  1. Achat S, Teisseyre Y, Marode E (1992) The scaling of the streamer-to-arc transition in a positive point-to-plane gap with pressure. J Phys D Appl Phys 25(4):661–668Google Scholar
  2. Adachi T, Fukunishi H, Takahashi Y, Hiraki Y, Hsu RR, Su HT, Chen AB, Mende SB, Frey HU, Lee LC (2006) Electric field transition between the diffuse and streamer regions of sprites estimated from ISUAL/array photometer measurements. Geophys Res Lett 33(17):L17803Google Scholar
  3. Allen NL, Ghaffar A (1995) The conditions required for the propagation of a cathode-directed positive streamer in air. J Phys D Appl Phys 28:331–337Google Scholar
  4. Babaeva NY, Naidis GV (1997) Dynamics of positive and negative streamers in air in weak uniform electric fields. IEEE Trans Plasma Sci 25:375–379Google Scholar
  5. Barrington-Leigh CP, Inan US, Stanley M (2001) Identification of sprites and elves with intensified video and broadband array photometry. J Geophys Res 106(A2):1741–1750. doi: 10.1029/2000JA000073 Google Scholar
  6. Bazelyan EM, Raizer YP (2000) Lightning physics and lightning protection, IoP Publishing Ltd, BristolGoogle Scholar
  7. Boeck WL, Vaughan OH, Blakeslee RJ, Vonnegut B, Brook M (1998) The role of the space shuttle videotapes in the discovery of sprites, jets and elves. J Atmos Sol Terr Phys 60:669–677Google Scholar
  8. Bourdon A, Pasko VP, Liu NY, Celestin S, Segur P, Marode E (2007) Efficient models for photoionization produced by non-thermal gas discharges in air based on radiative transfer and the Helmholtz equations. Plasma Source Sci Technol 16:656–678Google Scholar
  9. Briels TMP, Kos J, van Veldhuizen EM, Ebert U (2006) Circuit dependence of the diameter of pulsed positive streamers in air. J Phys D Appl Phys 39:5201–5210Google Scholar
  10. Bucsela E, Morrill J, Heavner M, Siefring C, Berg S, Hampton D, Moudry D, Wescott E, Sentman D (2003) \(\hbox{N}_2(\hbox{B}^3\Uppi_g)\) and \(\hbox{N}_2^+(\hbox{A}^2 \Uppi_u)\) vibrational distributions observed in sprites. J Atmos Sol Terr Phys 65:583–590Google Scholar
  11. Celestin S, Pasko VP (2010) Effects of spatial non-uniformity of streamer discharges on spectroscopic diagnostics of peak electric fields in transient luminous events. Geophys Res Lett 37:L07804Google Scholar
  12. Celestin S, Pasko VP (2011) Energy and fluxes of thermal runaway electrons produced by exponential growth of streamers during the stepping of lightning leaders and in transient luminous events. J Geophys Res 116:A03315Google Scholar
  13. Chanrion O, Neubert T (2008) A PIC-MCC code for simulation of streamer propagation in air. J Comput Phys 227(15):7222–7245Google Scholar
  14. Chanrion O, Neubert T (2010) Production of runaway electrons by negative streamer discharges. J Geophys Res 115:A00E32. doi: 10.1029/2009JA014774 Google Scholar
  15. Cummer SA, Lyons WA (2005) Implication of lightning charge moment changes for sprite initiation. J Geophys Res 110:A04304. doi: 10.1029/2004JA010812 Google Scholar
  16. Cummer SA, Jaugey NC, Li JB, Lyons WA, Nelson TE, Gerken EA (2006) Submillisecond imaging of sprite development and structure. Geophys Res Lett 33:L04104. doi: 10.1029/2005GL024969 Google Scholar
  17. Dhali SK, Williams PF (1987) Two-dimensional studies of streamers in gases. J Appl Phys 62:4696–4707Google Scholar
  18. Ebert U, Sentman D (2008) Editorial Review: Streamers, sprites, leaders, lightning: from micro- to macroscales. J Phys D Appl Phys 41:230301Google Scholar
  19. Ebert U, Nijdam S, Li C, Luque A, Briels T, van Veldhuizen E (2010) Review of recent results on streamer discharges and discussion of their relevance for sprites and lightning. J Geophys Res 115:A00E43Google Scholar
  20. Fishman GJ, Bhat PN, Mallozzi R, Horack JM, Koshut T, Kouveliotou C, Pendleton GN, Meegan CA, Wilson RB, Paciesas WS, Goodman SJ, Christian HJ (1994) Discovery of intense gamma-ray flashes of atmospheric origin. Science 264(5163):1313–1316Google Scholar
  21. Frey HU, Mende SB, Cummer SA, Li J, Adachi T, Fukunishi H, Takahashi Y, Chen AB, Hsu RR, Su HT, Chang YS (2007) Halos generated by negative cloud-to-ground lightning. Geophys Res Lett 34:L18801Google Scholar
  22. Gallimberti I, Bacchiega G, Bondiou-Clergerie A, Lalande P (2002) Fundamental processes in long air gap discharges. C R Phys 3(10):1335–1359. doi: 10.1016/S1631-0705(02)01414-7 Google Scholar
  23. Gerken EA, Inan US (2002) A survey of streamer and diffuse glow dynamics observed in sprites using telescopic imagery. J Geophys Res 107(A11):1344. doi: 10.1029/2002JA009248 Google Scholar
  24. Gerken EA, Inan US (2003) Observations of decameter-scale morphologies in sprites. J Atmos Sol Terr Phys 65:567–572. doi: 10.1016/S1364-6826(02)00333-4 Google Scholar
  25. Gerken EA, Inan US, Barrington-Leigh CP (2000) Telescopic imaging of sprites. Geophys Res Lett 27:2637–2640Google Scholar
  26. Gordillo-Vazquez FJ, Luque A (2010) Electrical conductivity in sprite streamer channels. Geophys Res Lett 37:L16809. doi: 10.1029/2010GL044349 Google Scholar
  27. Haldoupis C, Amvrosialdi N, Cotts BRT, van der Velde OA, Chanrion O, Neubert T (2010) More evidence for a one-to-one correlation between Sprites and Early VLF perturbations. J Geophys Res 115:A07304Google Scholar
  28. Haldoupis C, Cohen M, Cotts B, Arnone E, Inan U (2012) Long-lasting D-region ionospheric modifications, caused by intense lightning in association with elve and sprite pairs. Geophys Res Lett 39:L16801Google Scholar
  29. Han F, Cummer SA (2010) Midlatitude nighttime D region ionosphere variability on hourly to monthly time scales. J Geophys Res 115:A09323. doi: 10.1029/2010JA015437 Google Scholar
  30. Hayakawa M, Nakamura T, Hobara Y, Williams E (2004) Observation of sprites over the Sea of Japan and conditions for lightning-induced sprites in winter. J Geophys Res 109:A01312. doi: 10.1029/2003JA009905 Google Scholar
  31. Hu WY, Cummer SA, Lyons WA (2002) Lightning charge moment changes for the initiation of sprites. Geophys Res Lett 29(8):1279. doi: 10.1029/2001GL014593 Google Scholar
  32. Hu WY, Cummer SA, Lyons WA (2007) Testing sprite initiation theory using lightning measurements and modeled electromagnetic fields. J Geophys Res 112(D13):D13115Google Scholar
  33. Inan US (2002) Lightning effects at high altitudes: sprites, elves, and terrestrial gamma ray flashes. C R Phys 3(10):1411–1421Google Scholar
  34. Inan US, Cummer SA, Marshall RA (2010) A survey of ELF and VLF research on lightning-ionosphere interactions and causative discharges. J Geophys Res 115:A00E36Google Scholar
  35. Kanmae T, Stenbaek-Nielsen HC, McHarg MG (2007) Altitude resolved sprite spectra with 3 ms temporal resolution. Geophys Res Lett 34:L07810Google Scholar
  36. Kanmae T, Stenbaek-Nielsen HC, McHarg MG, Haaland RK (2012) Diameter–speed relation of sprite streamers. J Phys D Appl Phys 45(27):275203. doi: 10.1088/0022-3727/45/27/275203 Google Scholar
  37. Kosar BC, Liu NY, Rassoul HK (2012) Luminosity and propagation characteristics of sprite streamers initiated from small ionospheric disturbances at sub-breakdown conditions. J Geophys Res 117:A08328. doi: 10.1029/2012JA017632 Google Scholar
  38. Kuo CL (2012) The middle atmosphere: discharge phenomena. In: Ghadawala R (ed) Advances in spacecraft systems and orbit determination, InTech, Shanghai, pp 1–28Google Scholar
  39. Kuo CL, Hsu RR, Su HT, Chen AB, Lee LC, Mende SB, Frey HU, Fukunishi H, Takahashi Y (2005) Electric fields and electron energies inferred from the ISUAL recorded sprites. Geophys Res Lett 32:L19103. doi: 10.1029/2005GL023389 Google Scholar
  40. Kuo CL, Chou JK, Tsai LY, Chen AB, Su HT, Hsu RR, Cummer SA, Frey HU, Mende SB, Takahashi Y, Lee LC (2009) Discharge processes, electric field, and electron energy in ISUAL-recorded gigantic jets. J Geophys Res 114:A04314Google Scholar
  41. Lang TJ, Li J, Lyons WA, Cummer SA, Rutledge SA, MacGorman DR (2011) Transient luminous events above two mesoscale convective systems: charge moment change analysis. J Geophys Res 116:A10306. doi: 10.1029/2011JA016758 Google Scholar
  42. Li C, Ebert U, Hundsdorfer W (2009) 3D hybrid computations for streamer discharges and production of runaway electrons. J Phys D Appl Phys 42(20):202003. doi: 10.1088/0022-3727/42/20/202003 Google Scholar
  43. Li J, Cummer S (2011) Estimation of electric charge in sprites from optical and radio observations. J Geophys Res 116:A01301. doi: 10.1029/2010JA015391 Google Scholar
  44. Li J, Cummer SA (2009) Measurement of sprite streamer acceleration and deceleration. Geophys Res Lett 36:L10812Google Scholar
  45. Li J, Cummer SA (2012) Relationship between sprite streamer behavior and lightning-driven electric fields. J Geophys Res 117:A01317Google Scholar
  46. Li J, Cummer SA, Lu G, Zigoneanu L (2012) Charge moment change and lightning-driven electric fields associated with negative sprites and halos. J Geophys Res 117:A09310. doi: 10.1029/2012JA017731 Google Scholar
  47. Liu NY (2010) Model of sprite luminous trail caused by increasing streamer current. Geophys Res Lett 37:L04102. doi: 10.1029/2009GL042214 Google Scholar
  48. Liu NY (2012) Multiple ion species fluid modeling of sprite halos and the role of electron detachment of O in their dynamics. J. Geophys. Res. 117:A03308. doi: 10.1029/2011JA017062 Google Scholar
  49. Liu NY, Pasko VP (2004) Effects of photoionization on propagation and branching of positive and negative streamers in sprites. J Geophys Res 109:A04301. doi: 10.1029/2003JA010064 Google Scholar
  50. Liu NY, Pasko VP (2005) Molecular nitrogen LBH band system far-UV emissions of sprite streamers. Geophys Res Lett 32:L05104. doi: 10.1029/2004GL022001 Google Scholar
  51. Liu NY, Pasko VP (2006) Effects of photoionization on similarity properties of streamers at various pressures in air. J Phys D Appl Phys 39:327–334. doi: 10.1088/0022-3727/39/2/013 Google Scholar
  52. Liu NY, Pasko VP (2010) NO-gamma emissions from streamer discharges: direct electron impact excitation versus resonant energy transfer. J Phys D Appl Phys 43:082001Google Scholar
  53. Liu NY, Pasko VP, Burkhardt DH, Frey HU, Mende SB, Su H-T, Chen AB, Hsu R-R, Lee L-C, Fukunishi H, Takahashi Y (2006) Comparison of results from sprite streamer modeling with spectrophotometric measurements by ISUAL instrument on FORMOSAT-2 satellite. Geophys Res Lett 33:L01101. doi: 10.1029/2005GL024243 Google Scholar
  54. Liu NY, Pasko VP, Adams K, Stenbaek-Nielsen HC, McHarg MG (2009) Comparison of acceleration, expansion, and brightness of sprite streamers obtained from modeling and high-speed video observations. J Geophys Res 114:A00E03Google Scholar
  55. Liu NY, Pasko VP, Frey HU, Mende SB, Su H-T, Chen AB, Hsu R-R, Lee L-C (2009) Assessment of sprite initiating electric fields and quenching altitude of \(\hbox{a}^1\Uppi_g\) state of N2 using sprite streamer modeling and ISUAL spectrophotometric measurements. J Geophys Res 114:A00E02Google Scholar
  56. Liu NY, Kosar B, Sadighi S, Dwyer JR, Rassoul HK (2012) Formation of streamer discharges from an isolated ionization column at subbreakdown conditions. Phys Rev Lett 109(2):025002. doi: 10.1103/PhysRevLett.109.025002 Google Scholar
  57. Loeb LB, Meek JM (1940) The mechanism of spark discharge in air at atmospheric pressure. J Appl Phys 11:438–447Google Scholar
  58. Lu G, Blakeslee RJ, Li J, Smith DM, Shao XM, McCaul EW, Buechler DE, Christian HJ, Hall JM, Cummer SA (2010) Lightning mapping observation of a terrestrial gamma-ray flash. Geophys Res Lett 37:L11806. doi: 10.1029/2010GL043494 Google Scholar
  59. Lu G, Cummer SA, Li J, Han F, Smith DM, Grefenstette BW (2011) Characteristics of broadband lightning emissions associated with terrestrial gamma ray flashes. J Geophys Res 116:A03316. doi: 10.1029/2010JA016141 Google Scholar
  60. Lu G, Cummer SA, Blakeslee RJ, Weiss S, Beasley WH (2012) Lightning morphology and impulse charge moment change of high peak current negative strokes. J Geophys Res 117:D04212. doi: 10.1029/2011JD016890 Google Scholar
  61. Luque A, Ebert U (2009) Emergence of sprite streamers from screening-ionization waves in the lower ionosphere. Nat Geosci 2(11):757–760. doi: 10.1038/NGEO662 Google Scholar
  62. Luque A, Ebert U (2010) Sprites in varying air density: charge conservation, glowing negative trails and changing velocity. Geophys Res Lett 37:L06806. doi: 10.1029/2009GL041982 Google Scholar
  63. Luque A, Gordillo-Vazquez FJ (2011) Sprite beads originating from inhomogeneities in the mesospheric electron density. Geophys Res Lett 38:L04808. doi: 10.1029/2010GL046403 Google Scholar
  64. Luque A, Gordillo-Vazquez FJ (2012) Mesospheric electric breakdown and delayed sprite ignition caused by electron detachment. Nat Geosci 5(1):22–25. doi: 10.1038/NGEO1314 Google Scholar
  65. Lyons WA (1996) Sprite observations above the U.S. high plains in relation to their parent thunderstorm systems. J Geophys Res 101:29,641–29, 652Google Scholar
  66. Lyons WA, Nelson TE, Armstrong RA, Pasko VP, Stanley MA (2003) Upward electrical discharges from thunderstorm tops. Bull Am Meteorol Soc 84(4):445–454. doi: 10.1175/BAMS-84-4-445 Google Scholar
  67. Marshall RA (2012) An improved model of the lightning electromagnetic field interaction with the D-region ionosphere. J Geophys Res 117:A03316Google Scholar
  68. Marshall RA, Inan US (2006) High-speed measurements of small-scale features in sprites: Sizes and lifetimes. Radio Sci 41:RS6S43. doi: 10.1029/2005RS003353 Google Scholar
  69. Marshall TC, Rust WD (1993) Two types of vertical electrical structures in stratiform precipitation regions of mesoscale convective systems. Bull Am Meteorol Soc 74(11):2159–2170Google Scholar
  70. McHarg MG, Stenbaek-Nielsen HC, Kanmae T (2007) Streamer development in sprites. Geophys Res Lett 34:L06804. doi: 10.1029/2006GL027854 Google Scholar
  71. McHarg MG, Stenbaek-Nielsen HC, Kanmae T, Haaland RK (2010) Streamer tip splitting in sprites. J Geophys Res 115:A00E53. doi: 10.1029/2009JA014850 Google Scholar
  72. McHarg MG, Stenbaek-Nielsen HC, Kanmae T, Haaland RK (2011) High-speed imaging of sprite streamers. IEEE Trans Plasma Sci 39(11, Part 1, SI):2266–2267. doi: 10.1109/TPS.2011.2165299 Google Scholar
  73. Meek J (1940) A theory of spark discharge. Phys Rev 57(8):722–728Google Scholar
  74. Mishin EV, Milikh GM (2008) Blue jets: upward lightning. Space Sci Rev 137(1–4):473–488Google Scholar
  75. Montijn C, Ebert U (2006) Diffusion correction to the Raether–Meek criterion for the avalanche-to-streamer transition. J Phys D Appl Phys 39(14):2979–2992. doi: 10.1088/0022-3727/39/14/017 Google Scholar
  76. Morrill J, Bucsela E, Siefring C, Heavner M, Berg S, Moudry D, Slinker S, Fernsler R, Wescott E, Sentman D, Osborne D (2002) Electron energy and electric field estimates in sprites derived from ionized and neutral N2 emissions. Geophys Res Lett 29(10):1462. doi: 10.1029/2001GL014018 Google Scholar
  77. Morrill JS, Bucsela EJ, Pasko VP, Berg SL, Benesch WM, Wescott EM, Heavner MJ (1998) Time resolved N2 triplet state vibrational populations and emissions associated with red sprites. J Atmos Sol Terr Phys 60:811–829Google Scholar
  78. Morrow R, Lowke JJ (1997) Streamer propagation in air. J Phys D Appl Phys 30:614–627Google Scholar
  79. Moss GD, Pasko VP, Liu NY, Veronis G (2006) Monte Carlo model for analysis of thermal runaway electrons in streamer tips in transient luminous events and streamer zones of lightning leaders. J Geophys Res 111:A02307. doi: 10.1029/2005JA011350 Google Scholar
  80. Naidis GV (2009) Positive and negative streamers in air: velocity–diameter relation. Phys Rev E 79(5, Part 2):057401. doi: 10.1103/PhysRevE.79.057401 Google Scholar
  81. Neubert T, Rycroft M, Farges T, Blanc E, Chanrion O, Arnone E, Odzimek A, Arnold N, CF CFE, Turunen E, Bosinger T, Mika A, Haldoupis C, Steiner RJ, van der Velde O, Soula O, Berg P, Boberg F, Thejll P, Christiansen B, Ignaccolo M, Fullekrug M, Verronen PT, Montanya J, Crosby N (2008) Recent results from studies of electric discharges in the mesosphere. Surv Geophys 29(2):71–137Google Scholar
  82. Neubert T, Chanrion O, Arnone E, Zanotti F, Cummer S, Li J, Fuellekrug M, Soula S, van der Velde O (2011) The properties of a gigantic jet reflected in a simultaneous sprite: observations interpreted by a model. J Geophys Res 116:A12329. doi: 10.1029/2011JA016928 Google Scholar
  83. Pachter J, Qin J, Pasko VP (2012) Investigation of long-delayed sprite inception mechanism and the role of electron detachment. NSF EE REU Penn State Annu Res J 10:1–12Google Scholar
  84. Pasko VP (2006) Theoretical modeling of sprites and jets. In: Füllekrug M, Mareev EA, Rycroft MJ (eds) Sprites, elves and intense lightning discharges, NATO science series II: mathematics, physics and chemistry, 225th edn. Springer, Heidleberg, pp 253–311Google Scholar
  85. Pasko VP (2007) Red sprite discharges in the atmosphere at high altitude: the molecular physics and the similarity with laboratory discharges. Plasma Sources Sci Technol 16:S13–S29. doi: 10.1088/0963-0252/16/1/S02 Google Scholar
  86. Pasko VP (2008) Blue jets and gigantic jets: transient luminous events between thunderstorm tops and the lower ionosphere. Plasma Phys Control. Fusion 50:124050Google Scholar
  87. Pasko VP (2010) Recent advances in theory of transient luminous events. J Geophys Res 50:A00E35Google Scholar
  88. Pasko VP, Stenbaek-Nielsen HC (2002) Diffuse and streamer regions of sprites. Geophys Res Lett 29(10):1440. doi: 10.1029/2001GL014241 Google Scholar
  89. Pasko VP, Inan US, Bell TF (1995) Heating, ionization and upward discharges in the mesosphere due to intense quasi-electrostatic thundercloud fields. Geophys Res Lett 22(4):365–368Google Scholar
  90. Pasko VP, Inan US, Bell TF, Taranenko YN (1997) Sprites produced by quasi-electrostatic heating and ionization in the lower ionosphere. J Geophys Res 102(A3):4529–4561. doi: 10.1029/96JA03528 Google Scholar
  91. Pasko VP, Inan US, Bell TF (1998) Spatial structure of sprites. Geophys Res Lett 25:2123–2126Google Scholar
  92. Pasko VP, Inan US, Bell TF, Reising SC (1998) Mechanism of ELF radiation from sprites. Geophys Res Lett 25(18):3493–3496Google Scholar
  93. Pasko VP, Inan US, Bell TF (1999) Mesospheric electric field transients due to tropospheric lightning discharges. Geophys Res Lett 26:1247–1250Google Scholar
  94. Pasko VP, Inan US, Bell TF (2000) Fractal structure of sprites. Geophys Res Lett 27(4):497–500. doi: 10.1029/1999GL010749 Google Scholar
  95. Pasko VP, Inan US, Bell TF (1996) Sprites as luminous columns of ionization produced by quasi-electrostatic thundercloud fields. Geophys Res Lett 23(6):649–652Google Scholar
  96. Pasko VP, Yair Y, Kuo C-L (2012) Lightning related transient luminous events at high altitude in the Earth’s atmosphere: phenomenology, mechanisms and effects. Space Sci Rev 168(1–4):475–516. doi: 10.1007/s11214-011-9813-9 Google Scholar
  97. Petrov NI, Petrova GN (1999) Physical mechanisms for the development of lightning discharges between a thundercloud and the ionosphere. Tech Phys 44:472–475Google Scholar
  98. Qin J, Celestin S, Pasko VP (2011) On the inception of streamers from sprite halo events produced by lightning discharges with positive and negative polarity. J Geophys Res 116:A06305Google Scholar
  99. Qin J, Celestin S, Pasko VP (2012) Formation of single and double-headed streamers in sprite-halo events. Geophys Res Lett 39:L05810. doi: 10.1029/2012GL051088 Google Scholar
  100. Qin J, Celestin S, Pasko VP (2012) Minimum charge moment change in positive and negative cloud to ground lightning discharges producing sprites. Geophys Res Lett 39:L22801. doi: 2012GL053951 Google Scholar
  101. Qin J, Celestin S, Pasko VP (2012) Low frequency electromagnetic radiation from sprite streamers. Geophys Res Lett 39:L22803. doi: 2012GL053991 Google Scholar
  102. Qin J, Celestin S, Pasko VP (2013) Dependence of positive and negative sprite morphology on lightning characteristics and upper atmospheric ambient conditions. J Geophys Res 118:2623–2638. doi: 10.1029/2012JA017908 Google Scholar
  103. Raizer YP (1991) Gas discharge physics, 225th edn, Springer, New York, NYGoogle Scholar
  104. Raizer YP, Milikh GM, Shneider MN, Novakovski SV (1998) Long streamers in the upper atmosphere above thundercloud. J Phys D Appl Phys 31:3255–3264Google Scholar
  105. Raizer YP, Milikh GM, Shneider MN (2010) Streamer- and leader-like processes in the upper atmosphere: models of red sprites and blue jets. J Geophys Res 115:A00E42Google Scholar
  106. Rocco A, Ebert U, Hundsdorfer W (2002) Branching of negative streamers in free flight. Phys Rev E 66:035102(R). doi: 10.1103/PhysRevE.66.035102 Google Scholar
  107. Rodger CJ (1999) Red sprites, upward lightning and VLF perturbations. Rev Geophys 37:317–336Google Scholar
  108. Roth RJ (1995) Industrial plasma engineering, vol 1: principles, IOP Publishing Ltd, BristolGoogle Scholar
  109. Roussel-Dupre R, Colman JJ, Symbalisty E, Sentman D, Pasko VP (2008) Physical processes related to discharges in planetary atmospheres. Space Sci Rev 137(1–4):51–82Google Scholar
  110. Sentman DD, Stenbaek-Nielsen HC (2009) Chemical effects of weak electric fields in the trailing columns of sprite streamers. Plasma Sources Sci Technol 18(3):034012Google Scholar
  111. Sentman DD, Wescott EM, Osborne DL, Hampton DL, Heavner MJ (1995) Preliminary results from the Sprites94 campaign: red sprites. Geophys Res Lett 22:1205–1208Google Scholar
  112. Sentman DD, Stenbaek-Nielsen HC, McHarg MG, Morrill JS (2008) Plasma chemistry of sprite streamers. J Geophys Res 113:D11112Google Scholar
  113. Shao X-M, Lay EH, Jacobson AR (2013) Reduction of electron density in the night-time lower ionosphere in response to a thunderstorm. Nat Geosci 6(1):29–33. doi: 10.1038/NGEO1668 Google Scholar
  114. Shepherd TR, Rust WD, Marshall TC (1996) Electric fields and charges near 0 degrees C in stratiform clouds. Mon Weather Rev 124(5):919–938Google Scholar
  115. Siingh D, Singh AK, Patel RP, Singh R, Singh RP, Veenadhari B, Mukherjee M (2008) Thunderstorms, lightning, sprites and magnetospheric whistler-mode radio waves. Surv Geophys 29(6):499–551Google Scholar
  116. Smith DM, Lopez LI, Lin RP, Barrington-Leigh CP (2005) Terrestrial gamma-ray flashes observed up to 20 MeV. Science 307(5712):1085–1088. doi: 10.1126/science.1107466 Google Scholar
  117. Stanley M, Krehbiel P, Brook M, Moore C, Rison W, Abrahams B (1999) High speed video of initial sprite development. Geophys Res Lett 26:3201–3204Google Scholar
  118. Stenbaek-Nielsen HC, McHarg MG (2008) High time-resolution sprite imaging: observations and implications. J Phys D Appl Phys 41:234009Google Scholar
  119. Stenbaek-Nielsen HC, Moudry DR, Wescott EM, Sentman DD, Sabbas FTS (2000) Sprites and possible mesospheric effects. Geophys Res Lett 27:3829–3832Google Scholar
  120. Stenbaek-Nielsen HC, McHarg MG, Kanmae T, Sentman DD (2007) Observed emission rates in sprite streamer heads. Geophys Res Lett 34:L11105. doi: 10.1029/2007GL029881 Google Scholar
  121. Stenbaek-Nielsen HC, Kanmae T, McHarg MG, Haaland R (2013) High speed observations of sprite streamers. Surv Geophys. doi: 10.1007/s10712-013-9224-4
  122. Stenbaek-Nielsen HC, Haaland R, McHarg MG, Hensley BA, Kanmae T (2010) Sprite initiation altitude measured by triangulation. J Geophys Res 115:A00E12. doi: 10.1029/2009JA014543 Google Scholar
  123. Surkov VV, Hayakawa M (2012) Underlying mechanisms of transient luminous events: a review. Ann Geophys Atmos Hydrospheres Space Sci 30(8):1185–1212. doi: 10.5194/angeo-30-1185-2012 Google Scholar
  124. Tardiveau P, Marode E, Agneray A, Cheaib M (2001) Pressure effects on the development of an electric discharge in non-uniform fields. J Phys D Appl Phys 34:1690–1696Google Scholar
  125. Tavani M, Marisaldi M, Labanti C, Fuschino F, Argan A, Trois A, Giommi P, Colafrancesco S, Pittori C, Palma F, Trifoglio M, Gianotti F, Bulgarelli A, Vittorini V, Verrecchia F, Salotti L, Barbiellini G, Caraveo P, Cattaneo PW, Chen A, Contessi T, Costa E, D’Ammando F, Del Monte E, De Paris G, Di Cocco G, Di Persio G, Donnarumma I, Evangelista Y, Feroci M, Ferrari A, Galli M, Giuliani A, Giusti M, Lapshov I, Lazzarotto F, Lipari P, Longo F, Mereghetti S, Morelli E, Moretti E, Morselli A, Pacciani L, Pellizzoni A, Perotti F, Piano G, Picozza P, Pilia M, Pucella G, Prest M, Rapisarda M, Rappoldi A, Rossi E, Rubini A, Sabatini S, Scalise E, Soffitta P, Striani E, Vallazza E, Vercellone S, Zambra A, Zanello D, AGILE Team (2011) Terrestrial gamma-ray flashes as powerful particle accelerators. Phys Rev Lett 106(1):018501. doi: 10.1103/PhysRevLett.106.018501 Google Scholar
  126. Vadislavsky E, Yair Y, Erlick C, Price C, Greenberg E, Yaniv R, Ziv B, Reicher N, Devir A (2009) Indication for circular organization of column sprite elements associated with Eastern Mediterranean winter thunderstorms. J Atmos Sol Terr Phys 71(17–18):1835–1839. doi: 10.1016/j.jastp.2009.07.001 Google Scholar
  127. Veronis G, Pasko VP, Inan US (2001) Characteristics of mesospheric optical emissions produced by lightning discharges. J Geophys Res 104(A6):12645–12656Google Scholar
  128. Vitello PA, Penetrante BM, Bardsley JN (1993) Multidimensional modeling of the dynamic morphology of streamer coronas. In: Penetrante BM, Schultheis SE (eds) Non-thermal plasma techniques for pollution control, NATO ASI Series. G34, part A edn. Springer, New York, pp 249–271Google Scholar
  129. Vitello PA, Penetrante BM, Bardsley JN (1994) Simulation of negative-streamer dynamics in nitrogen. Phys Rev E 49:5574–5598Google Scholar
  130. Wait JR, Spies KP (1964) Characteristics of the Earth-ionosphere waveguide for VLF radio waves, Tech note 300, National Bureau of Standards, Boulder, COGoogle Scholar
  131. Williams E, Downes E, Boldi R, Lyons W, Heckman S (2007) Polarity asymmetry of sprite-producing lightning: a paradox? Radio Sci 42:RS2S17. doi: 10.1029/2006RS003488 Google Scholar
  132. Williams E, Kuo CL, Bor J, Satori G, Newsome R, Adachi T, Boldi R, Chen A, Downes E, Hsu RR, Lyons W, Saba MMF, Taylor M, Su HT (2012) Resolution of the sprite polarity paradox: the role of halos. Radio Sci 47:RS2002. doi: 10.1029/2011RS004794 Google Scholar
  133. Wilson CTR (1925) The electric field of a thundercloud and some of its effects. Proc Phys Soc Lond 37:32D–37DGoogle Scholar
  134. Zabotin NA, Wright JW (2001) Role of meteoric dust in sprite formation. Geophys Res Lett 28(13):2593–2596. doi: 10.1029/2000GL012699 Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Victor P. Pasko
    • 1
  • Jianqi Qin
    • 2
  • Sebastien Celestin
    • 3
  1. 1.Communications and Space Sciences Laboratory (CSSL), Department of Electrical EngineeringThe Pennsylvania State UniversityUniversity ParkUSA
  2. 2.Communications and Space Sciences Laboratory (CSSL), Department of Electrical EngineeringThe Pennsylvania State UniversityUniversity ParkUSA
  3. 3.Laboratory of Physics and Chemistry of the Environment and Space (LPC2E), CNRSUniversity of OrleansOrleans Cedex 2France

Personalised recommendations