Skip to main content

Advertisement

Log in

Feasibility of Monitoring the Hontomín (Burgos, Spain) CO2 Storage Site Using a Deep EM Source

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

Geophysical methods have been used experimentally during the last decade, a period of strong development, being adopted as complementary techniques for characterizing and monitoring hydrocarbon and gas reservoirs. In this study, we evaluated the ability of the controlled source electromagnetic (CSEM) method to monitor the storage of CO2 at the Research Laboratory on Geological Storage of CO2 at Hontomín (Burgos, Spain). Two aspects of the CSEM monitoring were examined considering the geoelectrical structure at the site, the technological constraints and the noise conditions of the Hontomín area. Borehole-to-surface simulations were performed to evaluate the detectability of the resistivity changes in the reservoir and the capacity to determine the location of the CO2 plume. The synthetic time-lapse study explores the possibilities of CSEM monitoring with a deep electric source. Three depths of the source are analyzed: above the plume, inside the plume, and beneath the stored CO2. In terms of the Hontomín storage site, the study confirmed that a deep electric source located beneath the injection depth can provide valuable information on the behavior of the stored CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

CSEM:

Controlled source electromagnetic

TDP:

Technological demonstration plant

EM:

Electromagnetic

TLS:

Time-lapse signal

References

  • Alcalde J, Martí D, Calahorrano A, Marzan I, Ayarza P, Carbonell R, Juhlin C, Pérez-Estaún A (2013) Active seismic characterization experiments of the Hontomín research facility for geological storage of CO2, Spain. Int J Greenh Gas Con, in press http://dx.doi.org/10.1016/j.ijggc.2013.01.039

  • Andréis D, MacGregor L (2011) Using CSEM to monitor production from a complex 3D gas reservoir—A synthetic case study. Lead Edge 30(9):1070–1079

    Article  Google Scholar 

  • Archie GE (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. Trans Am Inst Miner Metall Pet Eng 146:54–62

    Google Scholar 

  • Avdeev DB, Kuvshinov AV, Pankratov OV, Newman GA (1997) High-Performance Three-Dimensional Electromagnetic Modelling Using Modified Neumann Series. Wide-Band Numerical Solution and Examples. J Geomagn Geoelectr 49:1519–1539

    Article  Google Scholar 

  • Avdeev DB, Kuvshinov AV, Pandratov OV, Newman GA (2002) Three-dimensional induction logging problems, Part I: an integral equation solution and model comparisons. Geophysics 67(2):413–426

    Article  Google Scholar 

  • Bergmann P, Schmidt-Hattenberger C, Kiessling D, Rücker C, Labitzke T, Henninges J, Baumann G, Schütt H (2012) Surface-downhole electrical resistivity tomography applied to monitoring of CO2 storage at Ketzin Germany. Geophysics 77(6):B253–B267

    Article  Google Scholar 

  • Berre I, Lien M, Mannseth T (2011) Identification of three-dimensional electric conductivity changes from time-lapse electromagnetic observations. J Comput Physics 230:3915–3928

    Article  Google Scholar 

  • Bhuyian AH, Landrø M, Johansen SE (2012) 3D CSEM modeling and time-lapse sensitivity analysis for subsurface CO2 storage. Geophysics 77(5):E343–E355

    Article  Google Scholar 

  • Black N, Zhdanov MS (2009) Monitoring of hydrocarbon reservoirs using marine CSEM method. SEG Expand Abstr 28:850–854

    Google Scholar 

  • Boerner DE (1992) Controlled source electromagnetic deep sounding: theory, results and correlation with natural source results. Surv Geophys 13:435–488

    Article  Google Scholar 

  • Bourgeois B, Girard JF (2010) First modelling results of the EM response of a CO2 storage in the Paris basin. Oil Gas Sci Technol 65(4):597–614

    Article  Google Scholar 

  • Buil B, Gómez P, Peña J, Garralón A, Galarza C, Durán JM, Domínguez R, Escribano,A, Turrero MJ, Robredo LM, Sánchez L (2012) Caracterización y monitorización hidrogeoquímica de los acuíferos superiores a la formación almacenamiento de CO2 (Hontomín, Burgos) y actualización de la caracterización de aguas superficiales. Technical report CIEMAT/DMA/2G010/1/2012

  • Constable SC (1990) Marine electromagnetic induction studies. Surv Geophys 11:303–327

    Article  Google Scholar 

  • Constable S (2010) Ten years of marine CSEM for hydrocarbon exploration. Geophysics 75(5):75A67–75A81

    Google Scholar 

  • Constable S, Srnka LJ (2007) An introduction to marine controlled source electromagnetic methods for hydrocarbon exploration. Geophysics 72(2):WA3–WA12

    Article  Google Scholar 

  • De Witte L (1950) Relation between resistivities and fluid contents of porous rocks. Oil Gas J 19(16):120–132

    Google Scholar 

  • Edwards N (2005) Marine controlled source electromagnetics: principles, methodologies, future commercial applications. Surv Geophys 26:675–700

    Article  Google Scholar 

  • Eidesmo T, Ellingsrud S, MacGregor LM, Constable S, Sinha MC, Johanson S, Kong FN, Westerdahl H (2002) Sea bed logging (SBL), a new method for remote and direct identification of hydrocarbon filled layers in deepwater areas. First Break 20:144–152

    Google Scholar 

  • Ellingsrud S, Eidesmo T, Johansen S, Sinha MC, MacGregor LM, Constable S (2012) Remote sensing of hydrocarbon layers by seabed logging (SBL): results from a cruise offshore Angola. Lead Edge 21:972–982

    Article  Google Scholar 

  • Ellis M, Sinha M (2010) The potential of controlled source electromagnetic surveying in CO2 storage monitoring. 80th Annual International Meeting, SEG Expanded Abstracts 843–847

  • Girard JF, Coppo N, Rohmer J, Bourgeois B, Naudet V, Schmidt-Hattenberger C (2011) Time-lapse CSEM monitoring of the Ketzin (Germany) CO2 injection using 2xMAM configuration. Energy Procedia 4:3322–3329

    Article  Google Scholar 

  • JafarGandomi A, Curtis A (2011) Detectability of petrophysical properties of subsurface CO2-saturated aquifer reservoirs using surface geophysical methods. Lead Edge 30(10):1112–1121

    Article  Google Scholar 

  • Kang S, Jee Seol S, Byun J (2012) A feasibility study of CO2 sequestration monitoring using the mCSEM method at a deep brine aquifer in a shallow sea. Geophysics 77(2):E117–E126

    Article  Google Scholar 

  • Kaufman AA (1990) The electrical field in a borehole with a casing. Geophysics 55:29–38

    Article  Google Scholar 

  • Key K (2012) Marine electromagnetic studies of seafloor resources and tectonics. Surv Geophys 33:135–167

    Article  Google Scholar 

  • Kiessling D, Schmidt-Hattenberger C, Schuett H, Schilling F, Krueger K, Schoebel B, Danckwardt E, Kummerow J, theCO2SINK Group (2010) Geoelectrical methods for monitoring geological CO2 storage: first results from cross-hole and surface–downhole measurements from the CO2SINK test site at Ketzin (Germany). Int J Greenh Gas Con 4(5):816–826

    Google Scholar 

  • Kong FN, Roth F, Olsen PA, Stalheim SO (2009) Casing effects in the sea-to-borehole electromagnetic method. Geophysics 74(5):F77–F87

    Article  Google Scholar 

  • Le Pichon X, Sibuet JC (1971) Western extension of boundary between European and Iberian plates during the Pyrenean Orogeny. Earth Planet Sc Lett 12:83–88

    Article  Google Scholar 

  • Lee KH, Kim HJ, Uchida T (2005) Electromagnetic fields in a steel-cased borehole. Geophys Prospect 53:13–21

    Article  Google Scholar 

  • Lien M, Mannseth T (2008) Sensitivity study of marine CSEM data for reservoir production monitoring. Geophysics 73(4):F151–F163

    Article  Google Scholar 

  • MacGregor L, Andreis D, Tomlinson J, Barker N (2006) Controlled-source electromagnetic imaging on the Nuggets-1 reservoir. Lead Edge 25:984–992

    Article  Google Scholar 

  • Márquez M, Jurado MJ (2011) Petrophysical characterization of a CO2 storage reservoir using well logs. Geophysical Research Abstracts 13:EGU2011-6891-3. EGU General Assembly 2011

    Google Scholar 

  • Muñoz JA (1992) Evolution of a continental collision belt: ECORS-Pyrenees crustal balanced section. In: McClay KR (ed) Thrust tectonics. Chapman and Hall, London, pp 235–246

    Chapter  Google Scholar 

  • Muñoz JA (2002) The pyrenees. In: Gibbons W, Moreno T (eds) The geology of Spain. Geological Society, London, pp 370–385

    Google Scholar 

  • Nakatsuka Y, Xue Z, Garcia H, Matsuoka T (2010) Experimental study on CO2 monitoring and quantification of stored CO2 in saline formations using resistivity measurements. Int J Greenh Gas Con 4:209–216

    Article  Google Scholar 

  • Ogaya X, Ledo J, Queralt P, Marcuello A, Quintà A (2013) First geoelectrical image of the subsurface of the Hontomín site (Spain) for CO2 Geological Storage: a magnetotelluric 2D characterization. Int J Greenh Gas Con 13:168–179

    Article  Google Scholar 

  • Orange A, Key K, Constable S (2009) The feasibility of reservoir monitoring using time-lapse marine CSEM. Geophysics 74(2):F21–F29

    Article  Google Scholar 

  • Pardo D, Torres-Verdín C, Zhang Z (2008) Sensitivity study of borehole-to-surface and crosswell electromagnetic measurements acquired with energized steel casing to water displacement in hydrocarbon-bearing layers. Geophysics 73(6):F261–F268

    Article  Google Scholar 

  • Pérez-Estaún A (2011) Preinjection program of the technological developing plant in a saline aquifer in Hontomín. II Coloquio Hispano-Francés sobre Almacenamiento Geológico de CO2. http://www.coloquiohfalmacenamientoco2.es/ver_documento.php?id=32. Accessed 30 October 2012

  • Poupon A, Loy M, Tixier M (1954) A contribution to electrical log interpretations in shaly sands. J Petrol Technol 6:27–34

    Google Scholar 

  • Schamper C, Rejiba F, Tabbagh A, Spitz S (2011) Theoretical analysis of long offset time‐lapse frequency domain controlled source electromagnetic signals using the method of moments: application to the monitoring of a land oil reservoir. J Geophys Res 116:B03101, 23 pp

    Google Scholar 

  • Strack KM (1992) Exploration with deep transient electromagnetics. Elsevier, Amsterdam

    Google Scholar 

  • Waxman MH, Smits LJM (1968) Electrical conductivities in oil-bearing shaly sands. Soc Petrol Eng J 8:107–122

    Google Scholar 

  • Wirianto M, Mulder WA, Slob EC (2010) A feasibility study of land CSEM reservoir monitoring in a complex 3-D model. Geophys J Int 181(2):741–755

    Google Scholar 

  • Zhdanov MS, Endo M, Black N, Spangler L, Fairweather S, Hibbs A, Eiskamp GA, Will R (2013) Electromagnetic monitoring of CO2 sequestration in deep reservoirs. First Break 31:85–92

    Google Scholar 

Download references

Acknowledgments

This work was carried out as part of the Spanish MCI PIERCO2 (CGL2009-07604). Eloi Vilamajó currently supported by a grant FPU of the Spanish Ministry of Education, Culture and Sport. The authors would like to thank the Spanish Foundation CIUDEN – Ciudad de la Energía. The authors thank two anonymous reviewers for their useful comments that helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eloi Vilamajó.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vilamajó, E., Queralt, P., Ledo, J. et al. Feasibility of Monitoring the Hontomín (Burgos, Spain) CO2 Storage Site Using a Deep EM Source. Surv Geophys 34, 441–461 (2013). https://doi.org/10.1007/s10712-013-9238-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-013-9238-y

Keywords

Navigation