Surveys in Geophysics

, Volume 33, Issue 6, pp 1231–1280 | Cite as

Infrared Radiation in the Mesosphere and Lower Thermosphere: Energetic Effects and Remote Sensing



This paper discusses the formation mechanisms of infrared radiation in the mesosphere and lower thermosphere (MLT), the energetic effects of the radiative absorption/emission processes, and the retrieval of atmospheric parameters from infrared radiation measurements. In the MLT and above, the vibrational levels of the molecules involved in radiative transitions are not in local thermodynamic equilibrium (LTE) with the surrounding medium, and this then requires specific theoretical treatment. The non-LTE models for CO2, O3, and H2O molecules are presented, and the radiative cooling/heating rates estimated for five typical atmospheric scenarios, from polar winter to polar summer, are shown. An optimization strategy for calculating the cooling/heating rates in general circulation models is proposed, and its accuracy is estimated for CO2. The sensitivity of the atmospheric quantities retrieved from infrared observations made from satellites to the non-LTE model parameters is shown.


Infrared energy Radiative transfer Mesosphere lower thermosphere 



We would like to thank our colleagues for the discussions related to various aspects of this work: Richard Goldberg, David Huestis, Vassily Kharchenko, Rada Manuilova, Alexander Medvedev, William D. Pesnell, Svetlana Petelina, Richard Picard, Ladislav Rezac, James Russell III, Anne Smith, Gary Thomas, Jeremy Winick, Peter Wintersteiner, and Valentine Yankovsky. We thank two anonymous reviewers for their comprehensive and valuable comments. Finally, we thank Erich Becker, Michael Rycroft, Frank Schmidlin, and Anne Smith for proof reading the manuscript.


  1. Allen DC, Scragg T, Simpson CJSM (1980) Low temperature fluorescence studies of the deactivation of the bend-stretch manifold of CO2. Chem Phys 51:279–298CrossRefGoogle Scholar
  2. Anderson LS (1987) An algorithm for the simultaneous solution of thousands of transfer equations under global constraints. In: Kalkofen W (ed) Numerical radiative transfer. Cambridge University Press, Cambridge, pp 163–190Google Scholar
  3. Balakrishnan N, Kharchenko V, Dalgarno A (1998) Slowing of energetic O(3P) atoms in collisions with N2. J Geophys Res 103:23393–23398CrossRefGoogle Scholar
  4. Barcilon TV (1975) On Chahine’s relaxation method for the radiative transfer equation. J Atmos Sci 32:1626–1630CrossRefGoogle Scholar
  5. Bermejo-Pantaleón D, Funke B, López-Puertas M, García-Comas M, Stiller G, von Clarmann T, Linden A, Grabowski U, Höpfner M, Kiefer M, Glatthor N, Kellmann S, Lu G (2011) Global observations of thermospheric temperature and nitric oxide from MIPAS spectra at 5.3 μm. J Geophys Res 116(A10):A10313CrossRefGoogle Scholar
  6. Bernath PF, McElroy CT, Abrams MC, Boone CD, Butler M, Camy-Peyret C, Carleer M, Clerbaux C, Coheur PF, Colin R, DeCola P, DeMazière M, Drummond JR, Dufour D, Evans WFJ, Fast H, Fussen D, Gilbert K, Jennings DE, Llewellyn EJ, Lowe RP, Mahieu E, McConnell JC, McHugh M, McLeod SD, Michaud R, Midwinter C, Nassar R, Nichitiu F, Nowlan C, Rinsland CP, Rochon YJ, Rowlands N, Semeniuk K, Simon P, Skelton R, Sloan JJ, Soucy MA, Strong K, Tremblay P, Turnbull D, Walker KA, Walkty I, Wardle DA, Wehrle V, Zander R, Zou J (2005) Atmospheric chemistry experiment (ACE): mission overview. Geophys Res Lett 32:L15S01. doi: 10.1029/2005GL022386 CrossRefGoogle Scholar
  7. Bougher SW, Hunten DM, Roble RG (1994) CO2 cooling in terrestrial planet thermospheres. J Geophys Res 99:14609–14622CrossRefGoogle Scholar
  8. Brasseur GP, Solomon S (2005) Aeronomy of the middle atmosphere. Springer, New YorkGoogle Scholar
  9. Brion J, Chakir A, Charbonnier J, Daumont D, Parisse C, Malicet J (1998) Absorption spectra measurements for the ozone molecule in the 350–830 nm region. J Atm Chem 30:291–299CrossRefGoogle Scholar
  10. Castle KJ, Kleissas KM, Rhinehart JM, Hwang ES, Dodd JA (2006) Vibrational relaxation of CO2(ν2) by atomic oxygen. J Geophys Res 111(A09303). doi: 10.1029/2006JA011736
  11. Castle KJ, Black LA, Simione MW, Dodd JA (2012) Vibrational relaxation of CO22) by O(3P) in the 142–490 K temperature range. J Geophys Res. doi: 10.1029/2012JA017519
  12. Center RE (1973) Vibrational relaxation of CO2 by O atoms. J Chem Phys 59(7):3523–3528CrossRefGoogle Scholar
  13. Chabrillat S, Kockarts G (1997) Simple parameterization of the absorption of the solar Lyman-α line. Geophys Res Lett 24:2659–2662CrossRefGoogle Scholar
  14. Chahine MT (1968) Determination of the temperature profile in an atmosphere from its outgoing radiance. J Opt Soc Am 58:1634–1637CrossRefGoogle Scholar
  15. Chahine MT (1970) Inverse problems in radiative transfer: determination of atmospheric parameters. J Atmos Sci 27:960–967CrossRefGoogle Scholar
  16. Chahine MT (1972) A general relaxation method for inverse solution of the full radiative transfer equation. J Atmos Sci 29:741–747CrossRefGoogle Scholar
  17. Crutzen PJ (1970) Discussion of paper “Absorption and emission by carbon dioxide in the atmosphere” by JT Houghton. Quart J R Met Soc 96:767–770CrossRefGoogle Scholar
  18. DeMajistre R, Yee JH, Zhu X (2001) Parameterizations of oxygen photolysis and energy deposition rates due to solar energy absorption in the Schumann-Runge continuum. Geophys Res Lett 28(16):3163–3166CrossRefGoogle Scholar
  19. DeMore WB, Golden DM, Hampson RF, Howard CJ, Kolb CE, Molina MJ (1997) Chemical kinetics and photo-chemical data for use in stratospheric modeling. JPL Publ 97–4:1–128Google Scholar
  20. Dickinson RE (1984) Infrared radiative cooling in the mesosphere and lower thermosphere. J Atmos Sol Terr Phys 46:995–1008CrossRefGoogle Scholar
  21. Drummond JR, Houghton JT, Peskett GD, Rodgers CD, Wale MJ, Whitney J, Williamson EJ (1980) The stratospheric and mesospheric sounder on nimbus 7. Philos Trans R Soc Lond A296:219–241Google Scholar
  22. Feofilov AG, Kutepov AA, Medvedev AS, Hartogh P (2006) New technique for calculating the non-LTE infrared radiative cooling/heating rates in the Martian GCM. In: Forget F, López-Valverde MA, Desjean MC, Huot JP, Lefevre F, Lebonnois S, Lewis SR, Millour E, Read PL, Wilson RJ (eds) Second workshop on Mars atmosphere modelling and observations, held February 27–March 3, 2006. LMD, IAA, AOPP, CNES, ESA, Granada, Spain, pp 614–617Google Scholar
  23. Feofilov AG, Kutepov AA, Pesnell WD, Goldberg RA, Marshall BT, Gordley LL, García-Comas M, López-Puertas M, Manuilova RO, Yankovsky VA, Petelina SV, Russell JM III (2009) Daytime SABER/TIMED observations of water vapor in the mesosphere: retrieval approach and first results. Atmos Chem Phys 9:8139–8158CrossRefGoogle Scholar
  24. Feofilov AG, Kutepov AA, She C-Y, Smith AK, Pesnell WD, Goldberg RA (2012a) CO22)-O quenching rate coefficient derived from coincidental SABER/TIMED and Fort Collins lidar observations of the mesosphere and lower thermosphere. Atmos Chem Phys 12:9013–9023. doi: 10.5194/acp-12-9013-2012 CrossRefGoogle Scholar
  25. Feofilov AG, Kutepov AA, Rezac L, Smith MD (2012b) Extending MGS-TES temperature retrievals in the Martian atmosphere up to 90 km: retrieval approach and results. Icarus 221:949–959. doi: 10.1016/j.icarus.2012.09.033 Google Scholar
  26. Fernandez RP, Kaufmann M, Toselli BM (2009) Relative importance of ozone energy transfer processes in the middle atmosphere. J Atmos Sol Terr Phys 71:805–815CrossRefGoogle Scholar
  27. Fernandez RP, Kaufmann M, Toselli BM (2010) Effects of the inclusion of bending-to-stretching transitions in the non-LTE modeling of ozone vibrational temperatures. J Atmos Sol Terr Phys 72:890–899CrossRefGoogle Scholar
  28. Fischer H, Birk M, Blom C, Carli B, Carlotti M, von Clarmann T, Delbouille L, Dudhia A, Ehhalt D, Endemann M, Flaud JM, Gessner R, Kleinert A, Koopman R, Langen J, López-Puertas M, Mosner P, Nett H, Oelhaf H, Perron G, Remedios J, Ridolfi M, Stiller G, Zander R (2008) MIPAS: an instrument for atmospheric and climate research. Atmos Chem Phys 8:2151–2188CrossRefGoogle Scholar
  29. Fomichev VI (2009) The radiative energy budget of the middle atmosphere and its parameterization in general circulation models. J Atmos Sol Terr Phys 71:1577–1585CrossRefGoogle Scholar
  30. Fomichev VI, Kutepov AA, Akmaev RA, Shved GM (1993) Parameterization of the 15 μm CO2 band cooling in the middle atmosphere (15–115 km). J Atmos Terr Phys 55:7CrossRefGoogle Scholar
  31. Fomichev VI, Blanchet J-P, Turner DS (1998) Matrix parameterization of the 15 μm CO2 band cooling in the middle and upper atmosphere for variable CO2 concentration. J Geophys Res 103(D10):11505–11528CrossRefGoogle Scholar
  32. Fomichev VI, Ogibalov VP, Beagley SR (2004) Solar heating by the near-IR CO2 bands in the mesosphere. Geophys Res Lett 31:L21102Google Scholar
  33. Frisch U, Frisch H (1975) Non-LTE transfer, √ε revised. Mon Not R Astron Soc 173:167–182Google Scholar
  34. Fritts DC, Alexander MJ (2003) Gravity wave dynamics and effects in the middle atmosphere. Rev Geophys 41(1):1003–1067. doi: 10.1029/2001RG000106 CrossRefGoogle Scholar
  35. Fritts DC, Williams BP, She C-Y, Vance JD, Rapp M, Lübken F-J, Müllemann A, Schmidlin FJ, Goldberg RA (2004) Observations of extreme temperature and wind gradients near the summer mesopause during the MaCWAVE/MIDAS rocket campaign. Geophys Res Lett 31:L24S06. doi: 10.1029/2003GL019389 CrossRefGoogle Scholar
  36. Fu K, Liou KN (1992) On the correlated k-distribution method for radiative transfer in nonhomogeneous atmospheres. J Atmos Sci 49:2139–2156CrossRefGoogle Scholar
  37. Funke B, López-Puertas M, von Clarmann T, Stiller GP, Fischer H, Glatthor N, Grabowski U, Höpfner M, Kellmann S, Kiefer M, Linden A, Mengistu Tsidu G, Milz M, Steck T, Wang DY (2005) Retrieval of stratospheric NOx from 5.3 and 6.2 μm nonlocal thermodynamic equilibrium emissions measured by Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on Envisat. J Geophys Res 110:D09302. doi: 10.1029/2004JD005 CrossRefGoogle Scholar
  38. Funke B, López-Puertas M, García-Comas M, Stiller G, von Clarmann T, Höpfner M, Glatthor N, Grabowski U, Kellmann S, Linden A (2009) Carbon monoxide distributions from the upper troposphere to the mesosphere inferred from 4.7 μm non-local thermal equilibrium emissions measured by MIPAS on Envisat. Atmos. Chem Phys 9(7):2387–2411Google Scholar
  39. Funke B, López-Puertas M, García-Comas M, Kaufmann M, Höpfner M, Stiller GP (2012) GRANADA: a generic radiative transfer and non-LTE population algorithm. J Quant Spectrosc Radiat Transf 113(14):1771–1817CrossRefGoogle Scholar
  40. Garcia RR, Solomon S (1994) A new numerical model of the middle atmosphere. 2. Ozone and related species. J Geophys Res 99(D6):12937–12951CrossRefGoogle Scholar
  41. García-Comas M, López-Puertas M, Mertens CJ, Mlynczak MG, Russell JM III, Remsberg EE, Gordley LL, Kalogerakis KS, Copeland RA, Slanger TG (2002) The role of the quenching of O2(1) by atomic oxygen on 6.3 μm atmospheric radiances and its impact on the retrieval of water vapour. AGU Fall Meet Abstr A512+Google Scholar
  42. García-Comas M, Funke B, López-Puertas M, Bermejo-Pantaleón D, Glatthor N, von Clarmann T, Stiller G, Grabowski U, Boone CD, French WJR, Leblanc T, López-González MJ, Schwartz MJ (2011) On the quality of MIPAS kinetic temperature in the middle atmosphere. Atmos Chem Phys Discuss 11(8):24233–24312CrossRefGoogle Scholar
  43. Gille JC, Russell JM III (1984) The limb infrared monitor of the stratosphere—experiment description, performance, and results. J Geophys Res 89(D4):5125–5140CrossRefGoogle Scholar
  44. Gille JC, Bailey PL, Russell JM III (1980) Temperature and composition measurements from the LRIR and LIMS experiments on Nimbus 6 and 7. Philos Trans R Soc A 89:205–218CrossRefGoogle Scholar
  45. Gil-López S, López-Puertas M, Kaufmann M, Funke B, García-Comas M, Koukouli ME, Glatthor N, Grabowski U, Höpfner M, Stiller GP, von Clarmann T (2005) Retrieval of stratospheric and mesospheric O3 from high resolution MIPAS spectra at 15 and 10 μm. Adv Sp Res 36(5):943–951CrossRefGoogle Scholar
  46. Goldberg RA, Fritts DC, Williams BP, Lübken F-J, Rapp M, Singer W, Latteck R, Hoffmann P, Mullemann A, Baumgarten G, Schmidlin FJ, She C-Y, Krueger DA (2004) The MaCWAVE/MIDAS rocket and ground-based measurements of polar summer dynamics: overview and mean state structure. Geophys Res Lett 31:L24S02. doi: 10.1029/2004GL019411 CrossRefGoogle Scholar
  47. Goody RM, Yung YL (1995) Atmospheric radiation: theoretical basis. Oxford University Press, USAGoogle Scholar
  48. Goody RM, West R, Chen L, Crisp D (1989) The correlated-k method for radiation calculations in nonhomogeneous atmospheres. J Quant Spectr Rad Trans 42:539–550CrossRefGoogle Scholar
  49. Gordiets BF (1976) A model of the upper atmosphere radiating in infrared spectrum. Kratkie Soobsch Fiz 6:40Google Scholar
  50. Gordiets BF, Kulikov YuN, Markov MN, Marov MYa (1982) Numerical modelling of the thermospheric heat budget. J Geophys Res 87(A6):4504–4514CrossRefGoogle Scholar
  51. Gordley LL, Russell JM III (1981) Rapid inversion of limb radiance using an emissivity growth approximation. Appl Opt 20:807–813CrossRefGoogle Scholar
  52. Gordley LL, Hervig M, Fish C, Russell JM III, Cook J, Hanson S, Shumway A, Bailey S, Paxton G, Deaver L, Marshall BT, Burton J, Magill B, Brown C, Thompson E, Kemp J (2009) The solar occultation for ice experiment (SOFIE). J Atmos Sol Terr Phys 71:285–299. doi: 10.1016/JjastP2008.07.012 CrossRefGoogle Scholar
  53. Grossmann KU, Offermann D, Gusev O, Oberheide J, Riese M, Spang R (2002) The CRISTA-2 mission. J Geophys Res 107(D23):8173–8185. doi: 10.1029/2001JD000667 CrossRefGoogle Scholar
  54. Grossmann KU, Gusev O, Knieling P (2006) The distribution of carbon monoxide in the upper mesosphere and lower thermosphere during CRISTA-1 and CRISTA-2. J Atm Sol Terr Phys 68(15):1764–1780. doi: 10.1016/JjastP2006.05.022 CrossRefGoogle Scholar
  55. Gusev OA (2003) Non-LTE diagnostics of infrared observations of the planetary atmospheres. PhD thesis. University of Munich, http://deposiTddBde/cgi-bin/dokserv?idn=968893651&dok_var = d1&dok_ext = pdf&filename = 968893651.pdf
  56. Gusev OA, Kutepov AA (2003) Non-LTE gas in planetary atmospheres. In: Hubeny I, Mihalas D, Werner K (eds) Stellar atmosphere modeling, ASP conference series, vol 288, pp 318–330Google Scholar
  57. Gusev O, Kaufmann M, Grossmann KU, Schmidlin FJ, Shepherd MG (2006) Atmospheric neutral temperature distribution at the mesopause/turbopause altitude. J Atmos Sol Terr Phys 68(15):1684–1697. doi: 10.1016/JjastP2005.12.010 CrossRefGoogle Scholar
  58. Harris RD, Adams GW (1983) Where does the O(1D) energy go? J Geophys Res 88(A6):4918–4928CrossRefGoogle Scholar
  59. Hartogh P, Medvedev AS, Kuroda T, Saito R, Feofilov AG, Kutepov AA, Berger U (2005) Description and climatology of a new general circulation model of the Martian atmosphere. J Geophys Res 110:E11008. doi: 10.1029/2005JE002498 CrossRefGoogle Scholar
  60. Houghton JT, Taylor FW, Rodgers CD (1984 republished 2009) Remote soundings of atmospheres, Cambridge University Press, Cambridge, New York, Series title: Cambridge planetary science series, 343 ppGoogle Scholar
  61. Hubeny I, Lanz T (2003) Model photospheres with accelerated lambda iteration. In: Hubeny I, Mihalas D, Werner K (eds) Stellar atmosphere modeling, ASP conference series, vol 288, pp 51–68Google Scholar
  62. Hubeny I, Mihalas D, Werner K (eds) (2003) Stellar atmosphere modeling, ASP Conference Series, vol 288, 697 ppGoogle Scholar
  63. Huestis DL (2006) Vibrational energy transfer and relaxation in O2 and H2O. J Phys Chem A 110:6638–6642CrossRefGoogle Scholar
  64. Huestis DL, Bougher SW, Fox JL, Galand M, Johnson RE, Moses JI, Pickering JC (2008) Cross sections and reaction rates for comparative planetary aeronomy. Space Sci Rev 139:63–105. doi: 10.1007/s11214-008-9383-7 CrossRefGoogle Scholar
  65. Ivanov VV (1973) Transfer of radiation in spectral lines. National Bureau of Standards Special Publication N385, US Government Printing Office, Washington, DCGoogle Scholar
  66. Kaufmann M, Gusev OA, Grossmann KU, Roble RG, Hagan ME, Hartsough C, Kutepov AA (2002) The vertical and horizontal distribution of CO2 densities in the upper mesosphere and lower thermosphere as measured by CRISTA. J Geophys Res D107:8182–8200. doi: 10.1029/2001JD000704 CrossRefGoogle Scholar
  67. Kaufmann M, Gusev OA, Grossmann KU, Martin-Torres FJ, Marsh DR, Kutepov AA (2003) Satellite observations of daytime and nighttime ozone in the mesosphere and lower thermosphere. J Geophys Res 108(D9):4272–4285. doi: 10.1029/2002JD002800 CrossRefGoogle Scholar
  68. Kaufmann M, Gil-López S, López-Puertas M, Funke B, García-Comas M, Glatthor N, Grabowski U, Höpfner M, Stiller GP, von Clarmann T, Koukouli ME, Hoffmann L, Riese M (2006) Vibrationally excited ozone in the middle atmosphere. J Atmos Sol Terr Phys 68(2):202–212CrossRefGoogle Scholar
  69. Kharchenko V, Dalgarno A, Fox JL (2005) Thermospheric distribution of fast O(1D) atoms. J Geophys Res 110:A12305–A12313. doi: 10.1029/2005JA011232 CrossRefGoogle Scholar
  70. Khvorostovskaya LE, Potekhin IYu, Shved GM, Ogibalov VP, Uzyukova TV (2002) Measurement of the rate constant for quenching CO2(0110) by atomic oxygen at low temperatures: reassessment of the rate of cooling by the CO2 15-μm emission in the lower thermosphere. Izvestiya Atmos Ocean Phys 38:613–624Google Scholar
  71. Kockarts G (1994) Penetration of solar radiation in the Schumann-Runge bands of moleculated oxygen: a robust approximation. Ann Geophys 12:1207–1217Google Scholar
  72. Körner U, Sonnemann GR (2001) Global three-dimensional modeling of the water vapor concentration of the mesosphere-mesopause region and implications with respect to the noctilucent cloud region. J Geophys Res 106(9):9639–9651CrossRefGoogle Scholar
  73. Koukouli M, López-Puertas M, Gil-López S, Funke B, Milz M, for the IAA/IMK MIPAS/ENVISAT team (2006) Water vapour profiles and non-LTE parameters from its mesospheric emissions derived from MIPAS/ENVISAT. In: Geophys Res Abstr 8: 03303, SRef-ID: 1607-7962/gra/EGU06-A-03303Google Scholar
  74. Kumer JB, James TC (1983) SPIRE data evaluation and nuclear IR fluorescence processes, Report DNAOOI-79-C-0033. AFGL, BedfordGoogle Scholar
  75. Kutepov AA, Fomichev VI (1993) Application of the second-order escape probability approximation to the solution of the NLTE vibration–rotation band radiative transfer problem. J Atmos Terr Phys 55:1–6CrossRefGoogle Scholar
  76. Kutepov AA, Gusev OA, Ogibalov VP (1998) Solution of the non-LTE problem for molecular gas in planetary atmospheres: superiority of accelerated lambda iteration. J Quant Spectrosc Radiat Transf 60:199–220CrossRefGoogle Scholar
  77. Kutepov AA, Feofilov AG, Marshall BT, Gordley LL, Pesnell WD, Goldberg RA, Russell JM III (2006) SABER temperature observations in the summer polar mesosphere and lower thermosphere: importance of accounting for the CO2 ν2 quanta V–V exchange. Geophys Res Lett 33:L21809–L21813. doi: 10.1029/2006GL026591 CrossRefGoogle Scholar
  78. Kutepov AA, Feofilov AG, Medvedev AS, Pauldrach AWA, Hartogh P (2007) Small-scale temperature fluctuations associated with gravity waves cause additional radiative cooling of the mesopause region. Geophys Res Lett 34:L24807–L24811. doi: 10.1029/2007GL032392 CrossRefGoogle Scholar
  79. Kutepov AA, Feofilov AG, Medvedev AS, Berger U, Kaufmann M, Pauldrach AWA (2012) Infra-red radiative cooling/heating of the mesosphere and lower thermosphere due to the small-scale temperature fluctuations associated with gravity waves. In: Lubken FJ (ed) Climate and weather of the sun-earth system (CAWSES), Springer, pp 429–442Google Scholar
  80. Lacis AA, Oinas VA (1991) Description of the correlated k-distribution method for modeling nongrey gaseous absorption, thermal emission, and multiple scattering in vertically inhomogeneous atmospheres. J Geophys Res 96:9027–9063CrossRefGoogle Scholar
  81. Levine RD, Bernstein RB (1974) Energy disposal and energy consumption in elementary chemical reactions: the information theoretic approach. Acc Chem Res 7(12):393–400CrossRefGoogle Scholar
  82. Lilenfeld HV (1994) Deactivation of vibrationally-excited NO and CO2 by O-atoms. Final technical rept, 28 Sep 89-15 Jun 94, http://handlEdtiCmil/100.2/ADA298581, ADA298581
  83. López-Puertas M, Taylor FW (2001) Non-LTE radiative transfer in the atmosphere. World Scientific Publishing Co, River EdgeCrossRefGoogle Scholar
  84. López-Puertas M, López-Valverde MA, Rinsland CP, Gunson MR (1992) Analysis of the upper atmosphere CO2(v 2) vibrational temperatures retrieved from ATMOS/Spacelab 3 observations. J Geophys Res 97(D18):20,469–20,478Google Scholar
  85. López-Valverde MA, López-Puertas M, Remedios JJ, Rodgers CD, Taylor FW, Zipf EC, Erdman PW (1996) Validation of measurements of carbon monoxide from the improved stratospheric and mesospheric sounder. J Geophys Res 101(D):9929–9956. doi: 10.1029/95JD01715 CrossRefGoogle Scholar
  86. Lübken F-J (1999) Thermal structure of the Arctic summer mesosphere. J Geophys Res 104:9135–9149Google Scholar
  87. Lübken F-J, Rapp M, Strelnikova I (2007) The sensitivity of mesospheric ice layers to atmospheric background temperatures and water vapor. Adv Space Res 40:794–801CrossRefGoogle Scholar
  88. Maguire WC, Pearl JC, Smith MD, Conrath BJ, Kutepov AA, Kaelberer MS, Winter E, Christensen PR (2002) Observation of high altitude, CO2 hot bands on Mars by the orbiting thermal emission Spectrometer. J Geophys Res E107:5063–5067. doi: 10.1029/2001JE001516 CrossRefGoogle Scholar
  89. Malicet J, Daumont D, Charbonnier J, Parisse C, Chakir A, Brion J (1995) Ozone UV spectroscopy absorption cross-sections and temperature dependence. J Atmos Chem 21(4):263–273. doi: 10.1007/BF00696758 CrossRefGoogle Scholar
  90. Manuilova RO, Shved GM (1992) The 4.8 and 9.6 μm ozone band emissions in the middle atmosphere. J Atmos Terr Phys 54(9):1149–1168CrossRefGoogle Scholar
  91. Manuilova RO, Gusev OA, Kutepov AA, Von Clarmann T, Oelhaf H, Stiller GP, Wegner A, López-Puertas M, Martin-Torres FJ, Zaragoza Gand Flaud JM (1998) Modelling of non-LTE Limb spectra of IR ozone bands for the MIPAS space experiment. J Quant Spect Radiat Transf 59(3–5):405–422CrossRefGoogle Scholar
  92. Manuilova RO, Yankovsky VA, Semenov AO, Gusev OA, Kutepov AA, Sulakshina ON, Borkov YuG (2001) Non-equilibrium emission of the middle atmosphere in the IR ro-vibrational water vapor bands. Atmos Ocean Opt 14:864–867Google Scholar
  93. Marshall BT, Deaver LE, Thompson RE, Gordley LL, McHugh MJ, Hervig ME, Russell JM III (2011) Retrieval of temperature and pressure using broadband solar occultation: SOFIE approach and results. Atmos Meas Tech 4:893–907. doi: 10.5194/amt-4-893-2011 CrossRefGoogle Scholar
  94. Mertens CJ, Mlynczak MG, López-Puertas M, Wintersteiner PP, Picard RH, Winick JR, Gordley LL, Russell JM III (2001) Retrieval of mesospheric and lower thermospheric kinetic temperature from measurements of CO2 15 μm Earth limb emission under non-LTE conditions. Geophys Res Lett 28(7):1391–1394CrossRefGoogle Scholar
  95. Mihalas D (1978) Stellar atmospheres, 2nd edn. Freeman and Co, San FranciscoGoogle Scholar
  96. Minschwaner K, Anderson GP, Hall LA, Yoshino K (1992) Polynomial coefficients for calculating O2 Schumann-Runge cross sections at 0.5 cm−1 resolution. J Geophys Res 97:10103–10108CrossRefGoogle Scholar
  97. Mlynczak MG, Marshall BT (1996) A reexamination of the role of solar heating in the O2 atmospheric and infrared atmospheric bands. Geophys Res Lett 23:657–660CrossRefGoogle Scholar
  98. Mlynczak MG, Solomon S (1993) A detailed evaluation of the heating efficiency in the middle atmosphere. J Geophys Res 98:10517–10541CrossRefGoogle Scholar
  99. Mlynczak MG, Solomon SC, Zaras DS (1993) An updated model for O2(1Δg) concentrations in the mesosphere and lower thermosphere and implications for remote sensing of ozone at 1.27 μm. J Geophys Res D 98:18639–18648CrossRefGoogle Scholar
  100. Mlynczak MG, Morgan F, Yee J-H, Espy P, Murtagh D, Marshall B, Schmidlin F (2001) Simultaneous measurements of the O2(1Δ) and O2(1Σ) airglows and ozone in the daytime mesosphere. Geophys Res Lett 28(6):999–1002CrossRefGoogle Scholar
  101. Mlynczak MG, Marshall BT, Martin-Torres FJ, Russell JM III, Thompson RE, Remsberg EE, Gordley LL (2007) Sounding of the atmosphere using broadband emission radiometry observations of daytime mesospheric O2 (1Δ) 1.27 μm emission and derivation of ozone, atomic oxygen, and solar and chemical energy deposition rates. J Geophys Res 112(D15306). doi: 10.1029/2006JD008355
  102. Nee JB, Lee PC (1997) Detection of O(1D) produced in the photodissociation of O2 in the Schumann-Runge continuum. J Phys Chem A 101(36):6653–6657CrossRefGoogle Scholar
  103. Offermann D, Grossmann KU, Barthol P, Knieling P, Riese M, Trant R (1999) Cryogenic infrared spectrometers and telescopes for the atmosphere (CRISTA) experiment and middle atmosphere variability. J Geophys Res 104:16311–16325CrossRefGoogle Scholar
  104. Ogibalov VP (2000) The CO2 non-LTE problem taking account of the Multiquantum transitions on the ν2-mode during CO2-O collisions. Phys Chem Earth (B) 25(5–6):493–499CrossRefGoogle Scholar
  105. Pauldrach AWA (2003) Hot stars: old-fashioned or trendy? Rev Modern Astron 16:133–170Google Scholar
  106. Pauldrach AWA, Kudritzki RP, Puls J, Butler K, Hunsinger J (1994) Radiation driven winds of hot luminous stars—XII. A first step towards detailed UV line diagnostics of O-stars. Astron Astrophys 283:525–560Google Scholar
  107. Pauldrach AWA, Hoffmann TL, Lennon M (2001) Radiation driven winds of hot luminous stars—XIII. A description of NLTE line blocking and blanketing towards realistic models for expanding atmospheres. Astron Astrophys 375:161–202. doi: 10.1051/0004-6361:20021443 CrossRefGoogle Scholar
  108. Petelina SV, Zasetsky AY (2009) Temperature of mesospheric ice retrieved from the O-H stretch band. Geophys Res Lett 36:L15804. doi: 10.1029/2009GL038488 CrossRefGoogle Scholar
  109. Pollock DS, Scott GBI, Phillips LF (1993) Rate constant for quenching of CO2(010) by atomic oxygen. Geophys Res Lett 20:727–729CrossRefGoogle Scholar
  110. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2002) Numerical recipes in C ++, the art of scientific computing, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  111. Rapp M, Thomas GE (2006) Modeling the microphysics of mesospheric ice particles: assessment of current capabilities and basic sensitivities. J Atmos Sol Terr Phys 68(7):715–744CrossRefGoogle Scholar
  112. Ratkowski AJ, Picard RH, Winick JR, Grossmann KU, Homann D, Ulwick JC, Paboojian AJ (1994) Lower-thermospheric infra-red emissions from minor species during high-latitude twilight—B: analysis of 15 μm emission and comparison with non-LTE models. J Atmos Terr Phys 56:1899–1914CrossRefGoogle Scholar
  113. Remsberg EE, Marshall BT, Garcia-Comas M, Krueger D, Lingenfelser GS, Martin-Torres J, Mlynczak MG, Russell JM III, Smith AK, Zhao Y, Brown C, Gordley LL, López-Gonzalez MJ, López-Puertas M, She C-Y, Taylor MJ, Thompson RE (2008) Assessment of the quality of the Version 1.07 temperature-versus-pressure profiles of the middle atmosphere from TIMED/SABER. J Geophys Res 113(D17):1–27. doi: 10.1029/2008JD010013 CrossRefGoogle Scholar
  114. Rezac L (2011) Simultaneous retrieval of T(p) and CO2 volume mixing ratio from limb observations of infrared radiance under non-LTE conditions, PhD thesis,, Hampton University of Virginia, 163 pp
  115. Rezac L, Kutepov AA, Feofilov AG, Russell JM III (2011) On limb radiance calculations and convergence of relaxation type retrieval algorithms. Appl Opt 50(28):5499–5502CrossRefGoogle Scholar
  116. Rinsland C, Gunson MR, Zander R, López-Puertas M (1992) Middle and upper atmosphere pressure-temperature profiles and the abundances of CO2 and CO in the upper atmosphere from ATMOS/Spacelab 3 observations. J Geophys Res 97:20479CrossRefGoogle Scholar
  117. Roche AE, Kumer JB, Merganthaler JL, Ely GA, Ulpinger WG, Potter JF, James TC, Sterrit LW (1993) The cryogenic limb array etalon spectrometer (CLAES). J Geophys Res 98(10):10763–10775CrossRefGoogle Scholar
  118. Rodgers CD (2000) Inverse methods for atmospheric sounding: theory and practice. World Scientific Publishing Co, River Edge, 238 ppCrossRefGoogle Scholar
  119. Rothman LS, Gordon IE, Barbe A, Benner DC, Bernath PF, Birk M, Boudon V, Brown LR, Campargue A, Champion J-P, Chance K, Coudert LH, Dana V, Devi VM, Fally S, Flaud J-M, Gamache RR, Goldman A, Jacquemart D, Kleiner I, Lacome N, Lafferty WJ, Mandin J-Y, Massie ST, Mikhailenko ST, Miller CE, Moazzen-Ahmadi N, Naumenko OV, Nikitin AV, Orphal J, Perevalov VI, Perrin A, Predoi-Cross A, Rinsland CP, Rotger M, Ŝimeĉková M, Smith MAH, Sung K, Tashkun SA, Tennyson J, Toth RA, Vandaele AC, Vander Auwera J (2009) The HITRAN 2008 molecular spectroscopic database. J Quant Spectrosc Radiat Transf 110:533–572CrossRefGoogle Scholar
  120. Russell JM III, Gordley LL, Park JH, Drayson SR, Hesketh DH, Cicerone RJ, Tuck AF, Frederick JE, Harries JE, Crutzen PJ (1993) The halogen occultation experiment. J Geophys Res 98(D6):10777–10797CrossRefGoogle Scholar
  121. Russell JM III, Mlynczak MG, Gordley LL, Tansock JJ, Esplin R (1999) Overview of the SABER experiment and preliminary calibration results. Proc SPIE, Opt Spectr Tech Instrum Atmos Space Res III 3756:277–288Google Scholar
  122. Russell JM III, Bailey SM, Horanyi M, Gordley LL, Rusch DW, Hervig ME, Thomas GE, Randall CE, Siskind DE, Stevens MH, Summers ME, Taylor MI, Englert CR, Espy PJ, McClintock WE, Merkel AW (2009) Aeronomy of ice in the mesosphere (AIM): overview and early science result. J Atmos Sol Terr Phys 79:289–299. doi: 10.1016/JjastP2008.08.011 CrossRefGoogle Scholar
  123. Rybicki GB, Hummer DG (1991) An accelerated lambda iteration method for multilevel radiative transfer. I—Non-overlapping lines with background continuum. Astron Astrophys 245:171–181Google Scholar
  124. Rybicki GB, Hummer DG (1992) An accelerated lambda iteration method for multilevel radiative transfer. II—Overlapping transitions with full continuum. Astron Astrophys 262:209–215Google Scholar
  125. Sharma RD (1987) Infrared airglow, progress in atmospheric physics. In: Rodrigo R, López-Moreno JJ, López-Puertas M, Molina A (eds) Proceedings of the 15th annual meeting on atmospheric studies by optical methods. Kluwer, Boston, pp 177–186Google Scholar
  126. Sharma RD, Nadile RM (1981) Carbon dioxide (v2) radiance results using a new nonequilibrium model, presented at 19th aerospace sciences meeting, Am Inst Aeronaut Astronaut, St Louis MO, Jan 12–15Google Scholar
  127. Sharma RD, Wintersteiner PP (1990) Role of carbon dioxide in cooling planetary thermospheres. Geophys Res Lett 17:2201–2204CrossRefGoogle Scholar
  128. Sharma R, Zygelman B, von Esse F, Dalgarno A (1994) On the relationship between the population of the fine structure levels of the ground electronic state of atomic oxygen and the translational temperature. Geophys Res Lett 21:1731–1734CrossRefGoogle Scholar
  129. She C-Y, Vance JD, Williams BP, Krueger DA, Moosmüller H, Gibson-Wilde D, Fritts D (2002) Lidar studies of atmospheric dynamics near polar mesopause. EOS Trans AGU 83(27):289–293CrossRefGoogle Scholar
  130. She C-Y, Sherman YJ, Yuan T, Williams BP, Arnold K, Kawahara TD, Li T, Xu LF, Vance JD, Acott P, Krueger DA (2003) The first 80-hour continuous lidar campaign for simultaneous observation of mesopause region temperature and wind. Geophys Res Lett 30:1319–1323. doi: 10.1029/2002GL016412 CrossRefGoogle Scholar
  131. Shved GM, Khvorostovskaya LE, Potekhin IYu, Demyanikov AI, Kutepov AA, Fomichev VI (1991) Measurement of the quenching rate constant for collisions CO2(0110)–O: the importance of the rate constant magnitude for the thermal regime and radiation of the lower thermosphere. Izvest Atmos Ocean Phys 27:431–437Google Scholar
  132. Shved GM, Kutepov AA, Ogibalov VP (1998) Non-local thermodynamic equilibrium in CO2 in the middle atmosphere. I. Input data and populations of the v3 mode manifold states. J Atmos Sol Terr Phys 60:289–314CrossRefGoogle Scholar
  133. Smith WL (1970) Iterative solution of the radiative transfer equation for the temperature and absorbing gas profile of an atmosphere. Appl Opt 9:1993–1999CrossRefGoogle Scholar
  134. Smith AK (2012) Global dynamics of the MLT. Surv Geophys. doi: 10.1007/s10712-012-9196-9
  135. Smith AK, Marsh DR, Mlynczak MG, Mast JC (2010) Temporal variations of atomic oxygen in the upper mesosphere from SABER. J Geophys Res 115:D18309–D18326. doi: 10.1029/2009JD013434 CrossRefGoogle Scholar
  136. Sonnemann GR, Grygalashvyly M, Berger U (2005) Autocatalytic water vapor production as a source of large mixing ratios within the middle to upper mesosphere. J Geophys Res 110:D1530310. doi: 10.1029/2004JD005593 CrossRefGoogle Scholar
  137. Stair AT Jr, Sharma RD, Nadile RM, Baker DJ, Grieder WF (1985) Observations of limb radiance with cryogenic spectral infrared rocket experiment. J Geophys Res 90(A10):9763–9775CrossRefGoogle Scholar
  138. Taylor R (1974) Energy transfer processes in the stratosphere. Can J Chem 52:1436–1451CrossRefGoogle Scholar
  139. Taylor FW, Rodgers CD, Whitney JG, Werrett ST, Barnett JJ, Peskett GD, Venters P, Ballard J, Palmer CWP, Knight RJ, Morris P, Nightingale T, Dudhia A (1993) Remote sensing of the atmospheric structure and composition by pressure modulator radiometry from space: the ISAMS experiment on UARS. J Geophys Res 98(D6):10799–10814. doi: 10.1029/92JD03029 CrossRefGoogle Scholar
  140. Thomas G (2003) Are noctilucent clouds harbingers of global change in the middle atmosphere? Adv Space Res 32(9):1737–1746CrossRefGoogle Scholar
  141. Thomas RJ, Barth CA, Rusch DW, Sanders RW (1984) Solar mesosphere explorer near-infrared spectrometer: measurements of 1.27 μm radiances and the interference of mesospheric ozone. J Geophys Res 89:9569–9580CrossRefGoogle Scholar
  142. Unsöld A (1968) Physik der Sternatmospharen, Springer-Verlag Berlin, Heidelberg, New York, 866 ppGoogle Scholar
  143. Vollmann K, Grossmann KU (1997) Excitation of 4.3 μm CO2 emissions by O(1D) during twilight. Adv Space Res 20(6):1185–1189CrossRefGoogle Scholar
  144. Weitkamp C (2005) Lidar, range-resolved optical remote sensing of the atmosphere. Springer, New YorkGoogle Scholar
  145. Whiteway JA, Carswell AI (1995) Lidar observations of gravity wave activity in the upper stratosphere over Toronto. J Geophys Res 100:14113–14124CrossRefGoogle Scholar
  146. Wintersteiner PP, Picard RH, Sharma RD, Winick JR, Joseph RA (1992) Line-by-line radiative excitation model for the non-equilibrium atmosphere: application to CO2 15 μm emission. J Geophys Res D 97:18083–18117CrossRefGoogle Scholar
  147. Yankovsky VA, Babaev AS (2010) Specified calculation of the distribution of molecules of O2 (X, v = 1–30) in the mesosphere using new data on the quenching rate constant of reaction O2(X, v) with atomic oxygen. Atmos Ocean Opt 23(8):640–649 (in Russian)Google Scholar
  148. Yankovsky VA, Manuilova RO (2006) Model of daytime emissions of electronically-vibrationally excited products of O3 and O2 photolysis: application to ozone retrieval. Ann Geophys 24(11):2823–2839CrossRefGoogle Scholar
  149. Yankovsky V, Manuilova R, Babaev A, Feofilov A, Kutepov A (2011) Model of electronic-vibrational kinetics of the O3 and O2 photolysis products in the middle atmosphere: applications to water vapor retrievals from SABER/TIMED 6.3 μm radiance measurements. Int J Rem Sens, “Atmospheric studies by optical methods 36AM” special issue, pp 3065–3078Google Scholar
  150. Yee J-H, Cameron GE, Kusnierkiewicz DY (1999) Overview of TIMED. SPIE 3756:244–254CrossRefGoogle Scholar
  151. Zaragoza G, López-Puertas M, López-Valverde MA, Taylor FW (2000) Global distribution of CO2 in the upper mesosphere as derived from UARS/ISAMS measurements. J Geophys Res 105(19829). doi: 10.1029/2000JD900243

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Laboratory of Dynamical MeteorologyÉcole PolytechniquePalaiseauFrance
  2. 2.The Catholic University of AmericaWashingtonUSA
  3. 3.NASA Goddard Space Flight CenterGreenbeltUSA

Personalised recommendations