Advertisement

Surveys in Geophysics

, Volume 33, Issue 1, pp 65–105 | Cite as

Magnetotelluric Studies at the San Andreas Fault Zone: Implications for the Role of Fluids

  • Michael Becken
  • Oliver Ritter
Article

Abstract

Fluids residing in interconnected porosity networks have a significant weakening effect on the rheology of rocks and can strongly influence deformation along fault zones. The magnetotelluric (MT) technique is sensitive to interconnected fluid networks and can image these zones on crustal and upper mantle scales. MT images have revealed several prominent electrical conductivity anomalies at the San Andreas Fault which have been attributed to the presence of saline fluids within such networks and which have been associated with tectonic processes. These models suggest that ongoing fluid release in the upper mantle and lower crust is closely related to the mechanical state of the crust. Where fluids are drained into the brittle crust, and where these fluids are kept at high pressures, fault creep is supported. Fluid fluxes from deeper levels, in combination with meteoric and crustal metamorphic fluid inflow, and in response to fault creep, leads to high-conductivity zones developing as fault zone conductors in the brittle portion of crust. In turn, the absence of crustal fluid pathways may be characteristic for mechanically locked segments of the fault. Here, MT models suggest that fluids are trapped at depth and kept at high pressures. We speculate that fluids may infiltrate neighboring rocks and in their wake induce non-volcanic tremor.

Keywords

Magnetotellurics San Andreas Fault Fluids 

Notes

Acknowledgments

We wish to express our sincere thanks to the Program Committee and LOC of the Giza workshop, who offered us a chance to prepare and deliver this review. We also thank the guest editors of the review volume, T. Korja and N. Palshin, for their guidance and patience, and two reviewers for their constructive comments.

References

  1. Basel EDK, Satman A, Serpen U (2010) Predicted subsurface temperature distribution maps for Turkey. In: Proceedings world geothermal congress 2010, Bali, Indonesia, 25–29 April 2010Google Scholar
  2. Becken M, Burkhardt H (2004) An ellipticity criterion in magnetotelluric tensor analysis. Geophys J Int 159:69–82CrossRefGoogle Scholar
  3. Becken M, Ritter O, Park SK, Bedrosian PA, Weckmann U, Weber M (2008) A deep crustal fluid channel into the San Andreas Fault system near Parkfield, California. Geophys J Int 173:718–732CrossRefGoogle Scholar
  4. Becken M, Ritter O, Bedrosian PA, Weckmann U (2011) Correlation between deep fluids, tremor and creep along the central San Andreas Fault. Nature 480(7375):87–90Google Scholar
  5. Bedrosian PA, Unsworth MJ (2003) Magnetotelluric constraints on the nature of lower-crustal shear zones. AGU fall meeting abstracts, December 2003, p B8+Google Scholar
  6. Bedrosian PA, Unsworth MJ, Egbert GD, Thurber CH (2004) Geophysical images of the creeping segment of the San Andreas Fault: implications for the role of crustal fluids in the earthquake process. Tectonophysics 385:137–156CrossRefGoogle Scholar
  7. Bennington N, Thurber C, Roecker S (2008) Threedimensional seismic attenuation structure around the SAFOD site, Parkfield, California. Bull Seismol Soc Am 98:2934–2947CrossRefGoogle Scholar
  8. Biryol CB, Beck SL, Zandt G, Ozacar AA (2011) Segmented African lithosphere beneath the Anatolian region inferred from teleseismic P-wave tomography. Geophys J Int 184:1037–1057CrossRefGoogle Scholar
  9. Bleibinhaus F, Hole JA, Ryberg T, Fuis GS (2007) Structure of the California coast ranges and San Andreas Fault at SAFOD from seismic waveform inversion and reflection imaging. J Geophys Res 112:B06315CrossRefGoogle Scholar
  10. Bürgmann R, Dresen G (2008) Rheology of the lower crust and upper mantle: evidence from rock mechanics, Geodesy, and Field Observations. Annu Rev Earth Planet Sci 36:531–567CrossRefGoogle Scholar
  11. Buske S, Gutjahr S, Rentsch S, Shapiro SA (2007) Application of Fresnel-volume-migration to the SAFOD2003 data set. In: EAGE 69th annual meeting and technical exhibition, extended abstractsGoogle Scholar
  12. Byerlee J (1990) Friction, overpressure and fault normal compression. Geophys Res Lett 17:2109–2112CrossRefGoogle Scholar
  13. Caine JS, Evans JP, Evans CP, Foerster CP (1996) Fault zone architecture and permeability structure. Geology 24:1125–1128CrossRefGoogle Scholar
  14. Carena S (2006) 3-D geometry of active deformation east of the San Andreas Fault near Parkfield, California. AGU fall meeting abstracts, December 2006, p C178+Google Scholar
  15. Chéry J, Zoback MD, Hickman S (2004) A mechanical model of the San Andreas Fault and SAFOD pilot hole stress measurements. Geophys Res Lett 31:L15S13CrossRefGoogle Scholar
  16. Connolly JAD, Podladchikov YY (2004) Fluid flow in compressive tectonic settings: implications for midcrustal seismic reflectors and downward fluid migration. J Geophys Res 109:B04201CrossRefGoogle Scholar
  17. Cox SF (2005) Coupling between deformation, fluid pressures, and fluid flow in ore-producing hydrothermal systems at depth in the crust. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (eds) Economic geology 100th anniversary volume. Econ Geol, pp 39–76Google Scholar
  18. Dickinson WR, Rosenberg LI, Greene HG, Graham SA, Clark JC, Weber GE, Kidder S, Gary Ernst W, Brabb EE (2005) Net dextral slip, Neogene San Gregorio, Hosgri fault zone, coastal California: geologic evidence and tectonic implications. Geological Society of America special paper 391, pp 1–43Google Scholar
  19. Eberhart-Philips D, Stanley WD, Rodriguez BD, Lutter WJ (1995) Surface seismic and electrical methods to detect fluids related to faulting. J Geophys Res 100(B7):12919–12936CrossRefGoogle Scholar
  20. Field EH, Milner KR, and the 2007 Working Group on California Earthquake Probabilities (2008) Forecasting california’s earthquakes; what can we expect in the next 30 years? Technical report, U.S. Geological Survey, Fact Sheet 2008-3027, p 4Google Scholar
  21. Fulton PM, Saffer DM (2009) Potential role of mantle-derived fluids in weakening the San Andreas Fault. J Geophys Res 114:B07408CrossRefGoogle Scholar
  22. Fulton PM, Schmalzle G, Harris RN, Dixon T (2010) Reconciling patterns of interseismic strain accumulation with thermal observations across the Carrizo segment of the San Andreas Fault. Earth Planet Sci Lett 300:402–406CrossRefGoogle Scholar
  23. Goto T, Wada Y, Oshiman N, Sumitomo N (2005) Resistivity structure of a seismic gap along the Atotsugawa Fault, Japan. Phys Earth Planet Inter 148:55–72CrossRefGoogle Scholar
  24. Gueguen Y, Palciauskas V (1994) Introduction to the physics of rocks. Princeton University Press, PrincetonGoogle Scholar
  25. Gürer A, Bayrak M (2007) Relation between electrical resistivity and earthquake generation in the crust of West Anatolia, Turkey. Tectonophysics 445:49–65CrossRefGoogle Scholar
  26. Guzofski CA, Shaw JH, Lin G, Shearer PM (2007) Seismically active wedge structure beneath the Coalinga anticline, San Joaquin basin, California. J Geophys Res 112:B03S05CrossRefGoogle Scholar
  27. Hashin Z, Shtrikman S (1962) Electrical conductances of aqueous sodium chloride solutions from 0 to 800° and at pressures to 4000 bars. J Appl Phys 33:3125–3131CrossRefGoogle Scholar
  28. Hickman S, Zoback M, Ellsworth W (2004) Introduction to special section: preparing for the San Andreas Fault observatory at depth. Geophys Res Lett 31:L12S01CrossRefGoogle Scholar
  29. Hoffmann-Rothe A, Ritter O, Janssen C (2004) Correlation of electrical conductivity and structural damage at a major strike-slip fault in northern Chiley. J Geophys Res 109:B10101CrossRefGoogle Scholar
  30. Hole JA, Ryberg T, Sharma AK, Fuis SG (2004) Seismic velocity structure from a refraction–reflection survey across the San Andreas Fault at SAFOD. San Francisco, AGU fall meetingGoogle Scholar
  31. Iio Y, Sagiya T, Kobayashi Y (2004) Origin of the concentrated deformation zone in the Japanese islands and stress accumulation process of intraplate earthquakes. Earth Planets Space 56:831–842Google Scholar
  32. Ilkisik OM (1995) Regional heat flow in western Anatolia using silica temperature estimates from thermal springs. Tectonophysics 42:175–184CrossRefGoogle Scholar
  33. Irwin WP (1990) Geology and plate-tectonic development, chapter 3. The San Andreas Fault system in California. United States Geological Survey, professional paper 1515Google Scholar
  34. Irwin WP, Barnes I (1975) Effect of geologic structure and metamorphic fluids on seismic behavior of the San Andreas Fault system in central and northern California. Geology 3:713–716CrossRefGoogle Scholar
  35. Jiracek GR, Gonzalez VM, Caldwell TG, Wannamaker PE, Kilb D (2007) Seismogenic, electrically conductive, and fluid zones at continental plate boundaries in New Zealand, Himalaya, and California, USA. In: Okaya D, Stern T, Davey F (eds) A continental plate boundary: tectonics at South Island, New Zealand, Geophysical Monogaph Series AGU, vol 175, pp 347–369Google Scholar
  36. Johnson PA, McEvilly TV (1995) Parkfield seismicity: fluid-driven. J Geophys Res 100:12937–12950CrossRefGoogle Scholar
  37. Kappler KN, Morrison HF, Egbert GD (2010) Long-term monitoring of ULF electromagnetic fields at Parkfield, California. J Geophys Res 115:B04406CrossRefGoogle Scholar
  38. Karabacak V, Altunel E, Cakir Z (2011) Monitoring aseismic surface creep along the North Anatolian Fault (Turkey) using ground-based LIDAR. Earth Planet Sci Lett 304(1–2):64–70. ISSN:0012-821X; doi: 10.1016/j.epsl.2011.01.017.
  39. Kennedy BM, Kharake YK, Evans WC, Ellwood A, DePaolo DJ, Thordsen J, Mariner RH (1997) Mantle fluids in the San Andreas Fault system, California. Science 278:1278–1281CrossRefGoogle Scholar
  40. Keskin M (2003) Magma generation by slab steepening and breakoff beneath a subduction-accretion complex: an alternative model for collision-related volcanism in Eastern Anatolia, Turkey. Geophys Res Lett 30:8046CrossRefGoogle Scholar
  41. Kharaka YK, Thordsen JJ, Evans WC, Kennedy BM (1999) Geochemistry and hydromechanical interactions of fluids associated with the San Andreas Fault system, California. In: Haneberg WC, Mosely PS, Moore JC, Goodwin LB (eds) Faults and subsurface fluid flow in the shallow crust, vol 113 of Geophysical monograph. American Geophysical Union, Washington, DC, pp 129–148CrossRefGoogle Scholar
  42. Kirby SH, Wang K, Brocher T (2002) A possible deep, long-term source for water in the Northern San Andreas Fault system: a ghost of Cascadia subduction past? Eos Trans AGU 83:Fall Meeting Supplement Abstract S22B-1038Google Scholar
  43. Li YD, Malin PE (2008) San Andreas Fault damage at SAFOD viewed with fault-guided waves. Geophys Res Lett 35:L08304CrossRefGoogle Scholar
  44. Mackie RL, Livelybrooks DW, Madden TR, Larsen JC (1997) A magnetotelluric investigation of the San Andreas Fault at Carrizo Plain, California. Geophys Res Lett 24:1847–1850CrossRefGoogle Scholar
  45. Madden TR, LaTorraca GA, Park SK (1993) Electrical conductivity variations around Palmdale section of the San Andreas Fault zone. J Geophys Res 98:795–808CrossRefGoogle Scholar
  46. McCrory PA, Wilson DS, Stanley RG (2009) Continuing evolution of the Pacific-Juan de Fuca-North America slab window system—a trench-ridge-transform example from the Pacific Rim. Tectonophysics 464:30–42CrossRefGoogle Scholar
  47. McPhee DK, Jachens RC, Wentworth CM (2004) Crustal structure across the San Andreas Fault at the SAFOD site from potential field and geologic studies. Geophys Res Lett 31:L12S03CrossRefGoogle Scholar
  48. Mogami T, Yamaguchi S, Uyeshima M, Ogawa T, Usui Y, Murakami H, Tambo T, Toh H, Oshiman N, Yoshimura R, Koyama S, Mochizuki H (2010) Geoelectric structure around the Niigata Kobe Tectonic zone inferred from Network-MT survey. In: 20th international workshop on electromagnetic induction, Giza, EgyptGoogle Scholar
  49. Moore DE, Rymer MJ (2007) Talc-bearing serpentinite and the creeping section of the San Andreas Fault. Nature 448:795–797CrossRefGoogle Scholar
  50. Nadeau RM, Dolenc D (2005) Nonvolcanic tremors deep beneath the San Andreas Fault. Science 21:389CrossRefGoogle Scholar
  51. Nakajima J, Hasegawa A (2007) Deep crustal structure along the niigata-kobe tectonic zone, Japan: its origin and segmentation. Earth Planets Space 59:e5–e8Google Scholar
  52. Nicholson C, Sorlien CC, Atwater T, Crowell JC, Luyendyk BP (1994) Microplate capture, rotation of the western transverse ranges, and initiation of the San Andreas transform as a low-angle fault system. Geology 22:491–495CrossRefGoogle Scholar
  53. Obara K (2002) Nonvolcanic deep tremor associated with subduction in Southwest Japan. Science 31:1679–1681CrossRefGoogle Scholar
  54. Ogawa Y, Honkura Y (2004) Mid-crustal electrical conductors and their correlations to seismicity and deformation at Itoigawa-Shizuoka tectonic line, Central Japan. Earth Planets Space 56:1285–1291Google Scholar
  55. Ogawa Y, Takakura S, Honkura Y (2002) Crustal deformation around the northern and central Itoigawa-Shizuoka tectonic line. Earth Planets Space 54:1059–1063Google Scholar
  56. Ohzono M, Sagiya T, Hirahara K, Hashimoto M, Takeuchi A, Hoso Y, Wada Y, Onoue K, Ohya F, Doke R (2011) Strain accumulation process around the Atotsugawa fault system in the Niigata-Kobe Tectonic Zone, central Japan. Geophys J Int 184:977–990CrossRefGoogle Scholar
  57. Ozacar AA, Zandt G (2009) Crustal structure and seismic anisotropy near the San Andreas Fault at Parkfield, California. Geophys J Int 178:1098–1104CrossRefGoogle Scholar
  58. Page BM, Thompson GA, Coleman RG (1998) Late Cenozoic tectonics of the central and southern Coast Ranges of California. GSA Bull 110:846–876CrossRefGoogle Scholar
  59. Park SK, Larsen JC, Lee T-C (2007) Electrical resistivity changes not observed with the 28 September 2004 M6.0 Parkfield earthquake on the San Andreas Fault, California. J Geophys Res 112:B12305CrossRefGoogle Scholar
  60. Pili E, Kennedy BM, Conrad MS, Gratier JP (1998) Isotope constraints on the involvement of fluids in the San Andreas Fault. EOS Trans AGU 79:229–230Google Scholar
  61. Popov AA (2009) Three-dimensional thermo-mechanical modeling of deformation at plate boundaries: case study San Andreas Fault system. PhD thesis, Potsdam UniversityGoogle Scholar
  62. Quist AS, Marshall AL (1968) Electrical conductances of aqueous sodium chloride solutions from 0 to 800° and at pressures to 4000 bars. J Phys Chem 72:684–703CrossRefGoogle Scholar
  63. Rice JR (1992) Fault stress states, pore pressure distributions, and the weakness of the San Andreas Fault. In: Evans B, Wong T-F (eds) Fault mechanics and transport properties of rocks. Academic, San Diego, CA, pp 475–503CrossRefGoogle Scholar
  64. Ritter O, Haak V, Rath V, Stein E, Stiller M (1999) Very high electrical conductivity beneath the Münchberg Gneiss area in Southern Germany: implications for horizontal transport along shear planes. Geophys J Int 139:161–170CrossRefGoogle Scholar
  65. Ritter O, Hoffmann-Rothe A, Bedrosian PA, Weckmann U, Haak V (2005) Electrical conductivity images of active and fossil fault zones. In: Bruhn D, Burlini L (eds) In high-strain zones: structure and physical properties, vol 245. Geological Society of London Special Publications, pp 165–186Google Scholar
  66. Ryberg T, Fuis GS, Bauer K, Hole JA, Bleibinhaus F (2005) Upper-Crustal Reflectivity of the central California Coast Range Near the San Andreas Fault Observatory at Depth (SAFOD), USA. AGU Fall Meeting Abstracts, December 2005, p A441+Google Scholar
  67. Ryberg T, Haberland C, Fuis GS, Ellsworth WL, Shelly DR (2010) Locating non-volcanic tremor along the San Andreas Fault using a multiple array source imaging technique. Geophys J Int 183:1485–1500Google Scholar
  68. Sass JH, Williams CF, Lachenbruch AH, Galanis SP Jr, Grubb FV (1997) Thermal regime of the San Andreas Fault near Parkfield, California. J Geophys Res 102:27575–27585Google Scholar
  69. Schilling FR, Partzsch GM, Brasse H, Schwarz G (1997) Partial melting below the magmatic arc in the central andes deduced from geoelectromagnetic field experiments and laboratory data. Phys Earth Planet Inter 103:17–32CrossRefGoogle Scholar
  70. Schmandt B, Humphreys E (2010) Complex subduction and small-scale convection revealed by body-wave tomography of the western united states upper mantle. Earth Planet Sci Lett 297:435–445CrossRefGoogle Scholar
  71. Schmitt AK, Romer R, Stimac J (2006) Geochemistry of volcanic rocks from the Geysers geothermal reservoir, Californian Coast Ranges. Lithos 87:80–103CrossRefGoogle Scholar
  72. Schmucker U (1970) Anomalies of geomagnetic variations in the Southwestern United States. University of California Press, BerkeleyGoogle Scholar
  73. Scholz CH (2002) The mechanics of earthquakes and faulting, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  74. Schwartz SY, Rokosky JM (2007) Slow slip events and seismic tremor at circum-pacific subduction zones. Rev Geophys 45:RG3004CrossRefGoogle Scholar
  75. Shelly DR (2010) Migrating tremors illuminate deformation beneath the seismogenic San Andreas Fault. Nature 463:648–652CrossRefGoogle Scholar
  76. Shelly DR, Beroza GC, Ide S, Nakamula S (2006) Low-frequency earthquakes in Shikoku, Japan and their relationship to episodic tremor and slip. Nature 442Google Scholar
  77. Shelly DR, Ellsworth WL, Ryberg T, Haberland C, Fuis GS, Murphy J, Nadeau RM, Bürgmann R (2009) Precise location of San Andreas Fault tremors near Cholame, California using seismometer clusters: slip on the deep extension of the fault? Geophys Res Lett 36:L01303CrossRefGoogle Scholar
  78. Tank SB, Honkura Y, Ogawa Y, Matsushima M, Oshiman N, Tuncer MK, Celik C, Tolak E, Isikara AM (2005) Magnetotelluric imaging of the fault rupture area of the 1999 Izmit (Turkey) earthquake. Phys Earth Planet Inter 150:213–225CrossRefGoogle Scholar
  79. Thomas AM, Nadeau RM, Bürgmann R (2009) Tremor-tide correlations and near-lithostatic pore pressure on the deep San Andreas Fault. Nature 462:1048–1051CrossRefGoogle Scholar
  80. Thurber C, Roecker S, Zhang H, Baher S, Ellsworth W (2004) Fine-scale structure of the San Andreas Fault zone and location of the SAFOD target earthquakes. Geophys Res Lett 31:L12S02CrossRefGoogle Scholar
  81. Tietze K, Ritter O, Becken M (2010) Magnetotelluric 3D inversion models from the San Andreas Fault near Parkfield, California. AGU Fall Meeting Abstracts, December 2010, p A2086+Google Scholar
  82. Titus SJ, DeMets C, Tikoff B (2005) New slip rate estimates for the creeping segment of the San Andreas Fault, California. Geology 33:205–208CrossRefGoogle Scholar
  83. Toke NA, Arrowsmith JR, Rymer MJ, Landgraf A, Haddad DE, Busch MM, Coyan JA, Hannah A (2011) Late Holocene slip rate of the San Andreas Fault and its accommodation by creep and moderate-magnitude earthquakes at Parkfield, California. Geology 39:243–246CrossRefGoogle Scholar
  84. Townend J, Zoback MD (2000) How faulting keeps the crust strong. Geology 28:399–402CrossRefGoogle Scholar
  85. Townend J, Zoback MD (2004) Regional tectonic stress near the San Andreas Fault in central and southern California. Geophys Res Lett 31:L15S11CrossRefGoogle Scholar
  86. Tréhu AM (1991) Tracing the subducted oceanic crust beneath the central California continental margin: results from ocean bottom seismometers deployed during the 1986 PG&E/EDGE experiment. J Geophys Res 96:6493–6506CrossRefGoogle Scholar
  87. Türkoglu E, Unsworth M, Caglar I, Tuncer V, Avsar Ü (2008) Lithospheric structure of the Arabia-Eurasia collision zone in eastern Anatolia: magnetotelluric evidence for widespread weakening by fluids? Geology 36:619–622CrossRefGoogle Scholar
  88. Umeda K, McCrank GF, Ninomiya A (2007) Helium isotopes as geochemical indicators of a serpentinized fore-arc mantle wedge. J Geophys Res 112:B10206CrossRefGoogle Scholar
  89. Unsworth MJ (2010) Magnetotelluric studies of active continent–continent collisions. Surv Geophys 31:137–161CrossRefGoogle Scholar
  90. Unsworth MJ, Bedrosian P (2004a) Electrical resistivity structure at the SAFOD site from magnetotelluiric exploration. Geophys Res Lett 31:L12S05CrossRefGoogle Scholar
  91. Unsworth MJ, Bedrosian P (2004b) On the geoelectric structure of major strike-slip faults and shear zones. Earth Planets Space 56:1177–1184Google Scholar
  92. Unsworth MJ, Malin PE, Egbert GD, Booker JR (1997) Internal structure of the San Andreas Fault at Parkfield, California. Geology 25:359–362CrossRefGoogle Scholar
  93. Unsworth MJ, Egbert GD, Booker JR (1999) High resolution electromagnetic imaging of the San Andreas Fault in central California. J Geophys Res 104:1131–1150CrossRefGoogle Scholar
  94. Unsworth MJ, Bedrosian P, Eisel M, Egbert GD, Siripunvaraporn W (2000) Along strike variations in the electrical structure of the San Andreas Fault at Parkfield, California. Geophys Res Lett 27:3021–3024CrossRefGoogle Scholar
  95. Usui Y, Uyeshima M, Ogawa T, Yoshimura R, Oshiman N, Yamaguchi S, Toh H, Murakami H, Uto T, Kanezaki H, Mochido Y, Aizawa K, Tanbo T, Mogami T, Ogawa Y, Nishitani T, Sakanaka S, Mishina M, Satoh H, Goto T, Kasaya T, Mogi T, Yamaya Y, Harada M, Shiozaki I, Honkura Y, Koyama S, Mochiduki H, Nakao S, Wada Y, Fujita Y (2010) Deep resistivity structure beneath the Atotsugawsa fault area in the Niigata Kobe Tectonic zone revealed by a joint Inversion combining wideband- and network-MT surveys. In: 20th international workshop on electromagnetic induction, Giza, EgyptGoogle Scholar
  96. Wannamaker PE, Grant Caldwell T, Jiracek George R, Maris Virginie, Hill Graham J, Ogawa Yasuo, Bibby Hugh M, Bennie Stewart L, Heise Wiebke (2010) Fluid and deformation regime of an advancing subduction system at Marlborough, New Zealand. Nature 460:733–736CrossRefGoogle Scholar
  97. Weckmann U, Ritter O, Haak V (2003) A magnetotelluric study of the Damara Belt in Namibia: 2 MT phases over 90° reveal the internal structure of the Waterberg Fault/Omaruru Lineament. Phys Earth Planet Inter 138:91–112CrossRefGoogle Scholar
  98. Wheelock B, Constable S, Key K (2010) A marine electromagnetic study of the continental margin in central California, USA. In: 20th international workshop on electromagnetic induction, Giza, EgyptGoogle Scholar
  99. Wiersberg T, Erzinger J (2007) A helium isotope cross-section study through the San Andreas Fault at seismogenic depths. Geochem Geophys Geosyst 8:Q01002CrossRefGoogle Scholar
  100. Wiese H (1962) Geomagnetische Tiefentellurik Teil ii: Die Streichrichtung der Untergrundstrukturen des elektrischen Widerstandes, erschlossen aus geomagnetischen Variationen. Geofis. Pura e Appl 52:83–103CrossRefGoogle Scholar
  101. Wilson DS, McCrory Patricia A, Stanley Richard G (2005) Implications of volcanism in coastal California for the Neogene deformation history of western North America. Tectonics 24:TC3008CrossRefGoogle Scholar
  102. Yoshimura R, Oshiman N, Uyeshima M, Toh H, Uto T, Kanezaki H, Mochido Y, Aizawa K, Ogawa Y, Nishitani T, Sakanaka S, Mishina M, Satoh H, Goto T, Kasaya T, Yamaguchi S, Murakami H, Mogi T, Yamaya Y, Harada M, Shiozaki I, Honkura Y, Koyama S, Nakao S, Wada Y, Fujita Y (2009) Magnetotelluric transect across the niigata-kobe tectonic zone, central Japan: a clear correlation between strain accumulation and resistivity structure. Geophys Res Lett 36:L20311CrossRefGoogle Scholar
  103. Yoshino T, Noritake F (2011) Unstable graphite films on grain boundaries in crustal rocks. Earth Planet Sci Lett 306(3–4):186–192CrossRefGoogle Scholar
  104. Zhang H, Thurber C, Bedrosian P (2009) Joint inversion for vp, vs, and vp/vs at SAFOD, Parkfield, California. Geochem Geophys Geosyst 10:Q11002CrossRefGoogle Scholar
  105. Zoback M, Townend J, Grollimund B (2002) Steady-state failure equilibrium and deformation of intraplate lithosphere. Int Geol Rev 44:383–401CrossRefGoogle Scholar
  106. Zoback M, Hickman S, Ellsworth W (2006) Structure and properties of the San Andreas Fault in central California: preliminary results from the SAFOD experiment. In: Geophysical Research Abstracts, vol 8. EGUGoogle Scholar
  107. Zoback M, Hickman S, Ellsworth W (2010) Scientific drilling into the San Andreas Fault zone. Eos Trans AGU 91:197–199CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.GFZ German Research Centre for Geosciences PotsdamGermany
  2. 2.Institute of GeophysicsWWUMünsterGermany

Personalised recommendations